Recent Advances in Collaborative Scheduling of Computing Tasks in an Edge Computing Paradigm

被引:60
作者
Chen, Shichao [1 ,2 ]
Li, Qijie [3 ]
Zhou, Mengchu [1 ,4 ,5 ,6 ]
Abusorrah, Abdullah [5 ,6 ]
机构
[1] Macau Univ Sci & Technol, Fac Informat Tecnol, Macau 999078, Peoples R China
[2] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[3] Harbin Inst Technol, Sch Mech & Elect Engn & Automat, Shenzhen 518000, Peoples R China
[4] New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
[5] King Abdulaziz Univ, Dept Elect & Comp Engn, Fac Engn, Jeddah 21481, Saudi Arabia
[6] King Abdulaziz Univ, Ctr Res Excellence Renewable Energy & Power Syst, Jeddah 21481, Saudi Arabia
关键词
collaborative scheduling; edge computing; internet of things; limited resources; optimization; task offloading; RESOURCE-ALLOCATION; COMPUTATION; CLOUD; OPTIMIZATION; INTELLIGENCE; MANAGEMENT;
D O I
10.3390/s21030779
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In edge computing, edge devices can offload their overloaded computing tasks to an edge server. This can give full play to an edge server's advantages in computing and storage, and efficiently execute computing tasks. However, if they together offload all the overloaded computing tasks to an edge server, it can be overloaded, thereby resulting in the high processing delay of many computing tasks and unexpectedly high energy consumption. On the other hand, the resources in idle edge devices may be wasted and resource-rich cloud centers may be underutilized. Therefore, it is essential to explore a computing task collaborative scheduling mechanism with an edge server, a cloud center and edge devices according to task characteristics, optimization objectives and system status. It can help one realize efficient collaborative scheduling and precise execution of all computing tasks. This work analyzes and summarizes the edge computing scenarios in an edge computing paradigm. It then classifies the computing tasks in edge computing scenarios. Next, it formulates the optimization problem of computation offloading for an edge computing system. According to the problem formulation, the collaborative scheduling methods of computing tasks are then reviewed. Finally, future research issues for advanced collaborative scheduling in the context of edge computing are indicated.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 74 条
[1]   Task Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSA [J].
Alfakih, Taha ;
Hassan, Mohammad Mehedi ;
Gumaei, Abdu ;
Savaglio, Claudio ;
Fortino, Giancarlo .
IEEE ACCESS, 2020, 8 :54074-54084
[2]   Energy-Optimized Partial Computation Offloading in Mobile-Edge Computing With Genetic Simulated-Annealing-Based Particle Swarm Optimization [J].
Bi, Jing ;
Yuan, Haitao ;
Duanmu, Shuaifei ;
Zhou, MengChu ;
Abusorrah, Abdullah .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (05) :3774-3785
[3]   Joint Computation and Communication Cooperation for Energy-Efficient Mobile Edge Computing [J].
Cao, Xiaowen ;
Wang, Feng ;
Xu, Jie ;
Zhang, Rui ;
Cui, Shuguang .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (03) :4188-4200
[4]   Mandrake:Implementing Durability for Edge Clouds [J].
Carson, Kyle ;
Thomason, John ;
Wolski, Rich ;
Krintz, Chandra ;
Mock, Markus .
2019 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING (IEEE EDGE), 2019, :95-101
[5]   Task Offloading for Mobile Edge Computing in Software Defined Ultra-Dense Network [J].
Chen, Min ;
Hao, Yixue .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2018, 36 (03) :587-597
[6]   Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing [J].
Chen, Xu ;
Jiao, Lei ;
Li, Wenzhong ;
Fu, Xiaoming .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2016, 24 (05) :2827-2840
[7]   Decentralized Computation Offloading Game for Mobile Cloud Computing [J].
Chen, Xu .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2015, 26 (04) :974-983
[8]  
Cuervo E., 2010, Maui: making smartphones last longer with code offload, P49, DOI [10.1145/1814433.1814441, DOI 10.1145/1814433.1814441]
[9]   Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence [J].
Deng, Shuiguang ;
Zhao, Hailiang ;
Fang, Weijia ;
Yin, Jianwei ;
Dustdar, Schahram ;
Zomaya, Albert Y. .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (08) :7457-7469
[10]  
Fatemi Moghaddam Faraz, 2015, 2015 1st International Conference on Telematics and Future-Generation Networks (TAFGEN), P34, DOI 10.1109/TAFGEN.2015.7289571