On Fourier coefficients of elliptic modular forms mod l with applications to Siegel modular forms

被引:0
作者
Boecherer, Siegfried [1 ]
Das, Soumya [2 ,3 ]
机构
[1] Univ Mannheim, Inst Math, D-68131 Mannheim, Germany
[2] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
[3] Univ Mannheim, Mannheim, Germany
关键词
D O I
10.1007/s00229-021-01277-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study several aspects of nonvanishing Fourier coefficients of elliptic modular forms mod l, partially answering a question of Bellaiche-Soundararajan concerning the asymptotic formula for the count of the number of Fourier coefficients upto x which do not vanish mod l. We also propose a precise conjecture as a possible answer to this question. Further, we prove several results related to the nonvanishing of arithmetically interesting (e.g., primitive or fundamental) Fourier coefficients mod l of a Siegel modular form with integral algebraic Fourier coefficients provided l is large enough. We also make some efforts to make this "largeness" of l effective.
引用
收藏
页码:405 / 434
页数:30
相关论文
共 26 条
[1]   DISTINGUISHING HERMITIAN CUSP FORMS OF DEGREE 2 BY A CERTAIN SUBSET OF ALL FOURIER COEFFICIENTS [J].
Anamby, Pramath ;
Das, Soumya .
PUBLICACIONS MATEMATIQUES, 2019, 63 (01) :307-341
[2]  
[Anonymous], 2006, Modular Forms
[3]  
B?cherer, FUNDAMENTAL FOURIER
[4]   The Chebotarev density theorem in short intervals and some questions of Serre [J].
Balog, A ;
Ono, K .
JOURNAL OF NUMBER THEORY, 2001, 91 (02) :356-371
[5]   Image of pseudo-representations and coefficients of modular forms modulo p [J].
Bellaiche, Joel .
ADVANCES IN MATHEMATICS, 2019, 353 :647-721
[6]  
Bellaïche J, 2018, RES MATH SCI, V5, DOI 10.1007/s40687-018-0123-7
[7]   The number of nonzero coefficients of modular forms (mod p) [J].
Bellaiche, Joel ;
Soundararajan, Kannan .
ALGEBRA & NUMBER THEORY, 2015, 9 (08) :1825-1856
[8]   On mod p singular modular forms [J].
Boecherer, Siegfried ;
Kikuta, Toshiyuki .
FORUM MATHEMATICUM, 2016, 28 (06) :1051-1065
[9]   Congruences for Siegel modular forms and their weights [J].
Boecherer, Siegfried ;
Nagaoka, Shoyu .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2010, 80 (02) :227-231
[10]  
Das, 2018, P C AN AR THEOR AUT