Lorentz beams and symmetry properties in paraxial optics

被引:118
作者
El Gawhary, O
Severini, S
机构
[1] Univ Roma Tre, Dipartimento Fis, I-00146 Rome, Italy
[2] Ctr Interforze Studi Applicaz Mil, I-56010 San Piero A Grado, Pi, Italy
来源
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS | 2006年 / 8卷 / 05期
关键词
beam propagation; paraxial wave equation; group theory;
D O I
10.1088/1464-4258/8/5/007
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A new kind of tridimensional scalar optical beams is introduced. These beams are called Lorentz beams because the form of their transverse pattern in the source plane is the product of two independent Lorentz functions. A closed-form expression of free-space propagation under the paraxial limit is derived. Moreover, as the slowly varying part of these fields fulfils the scalar paraxial wave equation, it follows that there also exist Lorentz-Gauss beams, i.e. beams obtained by multiplying the original Lorentz beam by a Gaussian apodization function. Although the existence of Lorentz-Gauss beams can be shown by using two different and independent ways obtained recently by Kiselev (2004 Opt. Spectrosc. 96 497-81) and Gutierrez-Vega and Bandres (2005 J. Opt. Soc. Am. 22 289-98), here we have followed a third different approach, which makes use of Lie's group theory, and which possesses the merit to put into evidence the symmetries present in paraxial optics.
引用
收藏
页码:409 / 414
页数:6
相关论文
共 12 条
  • [1] [Anonymous], 1964, Handbook of mathematical functions
  • [2] Parabolic nondiffracting optical wave fields
    Bandres, MA
    Gutiérrez-Vega, JC
    Chávez-Cerda, S
    [J]. OPTICS LETTERS, 2004, 29 (01) : 44 - 46
  • [3] DUMKE WP, 1975, IEEE J QUANTUM ELECT, VQE11, P400, DOI 10.1109/JQE.1975.1068627
  • [4] DIFFRACTION-FREE BEAMS
    DURNIN, J
    MICELI, JJ
    EBERLY, JH
    [J]. PHYSICAL REVIEW LETTERS, 1987, 58 (15) : 1499 - 1501
  • [5] BESSEL-GAUSS BEAMS
    GORI, F
    GUATTARI, G
    PADOVANI, C
    [J]. OPTICS COMMUNICATIONS, 1987, 64 (06) : 491 - 495
  • [6] Alternative formulation for invariant optical fields:: Mathieu beams
    Gutiérrez-Vega, JC
    Iturbe-Castillo, MD
    Chávez-Cerda, S
    [J]. OPTICS LETTERS, 2000, 25 (20) : 1493 - 1495
  • [7] Helmholtz-Gauss waves
    Gutiérrez-Vega, JC
    Bandres, MA
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2005, 22 (02) : 289 - 298
  • [8] New structures in paraxial Gaussian beams
    Kiselev, AP
    [J]. OPTICS AND SPECTROSCOPY, 2004, 96 (04) : 479 - 481
  • [9] FOCUSING OF DIODE-LASER BEAMS - A SIMPLE MATHEMATICAL-MODEL
    NAQWI, A
    DURST, F
    [J]. APPLIED OPTICS, 1990, 29 (12): : 1780 - 1785
  • [10] Olver P J, 1993, APPL LIE GROUPS DIFF