Linear smoothed polygonal and polyhedral finite elements

被引:89
作者
Francis, Amrita [1 ]
Ortiz-Bernardin, Alejandro [2 ]
Bordas, Stephane P. A. [3 ,4 ,5 ]
Natarajan, Sundararajan [1 ]
机构
[1] Indian Inst Technol, Dept Mech Engn, Madras 600036, Tamil Nadu, India
[2] Univ Chile, Dept Mech Engn, Ave Beauchef 851, Santiago, Chile
[3] Univ Luxembourg, Fac Sci Technol & Commun, Luxembourg, Luxembourg
[4] Cardiff Univ, Sch Engn, Theoret & Appl Mech, Cardiff CF24 3AA, S Glam, Wales
[5] Univ Western Australia, Dept Mech Engn, Nedlands, WA, Australia
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Smoothed finite element method; linear smoothing; numerical integration; patch test; polytope elements; quadratic serendipity; FEM; INTEGRATION; MESHFREE; CONVERGENCE; ACCURACY;
D O I
10.1002/nme.5324
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The strain smoothing technique over higher order elements and arbitrary polytopes yields less accurate solutions than other techniques such as the conventional polygonal finite element method. In this work, we propose a linear strain smoothing scheme that improves the accuracy of linear and quadratic approximations over convex polytopes. The main idea is to subdivide the polytope into simplicial subcells and use a linear smoothing function in each subcell to compute the strain. This new strain is then used in the computation of the stiffness matrix. The convergence properties and accuracy of the proposed scheme are discussed by solving a few benchmark problems. Numerical results show that the proposed linear strain smoothing scheme makes the approximation based on polytopes able to deliver the same optimal convergence rate as traditional quadrilateral and hexahedral approximations. The accuracy is also improved, and all the methods tested pass the patch test to machine precision. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:1263 / 1288
页数:26
相关论文
共 42 条
  • [11] BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS
    da Veiga, L. Beirao
    Brezzi, F.
    Cangiani, A.
    Manzini, G.
    Marini, L. D.
    Russo, A.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (01) : 199 - 214
  • [12] VIRTUAL ELEMENTS FOR LINEAR ELASTICITY PROBLEMS
    da Veiga, L. Beirao
    Brezzi, F.
    Marini, L. D.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 794 - 812
  • [13] A virtual element method with arbitrary regularity
    da Veiga, Lourenco Beirao
    Manzini, Gianmarco
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) : 759 - 781
  • [14] An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics
    Dai, K. Y.
    Liu, G. R.
    Nguyen, T. T.
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2007, 43 (11-12) : 847 - 860
  • [15] A four-point integration scheme with quadratic exactness for three-dimensional element-free Galerkin method based on variationally consistent formulation
    Duan, Qinglin
    Gao, Xin
    Wang, Bingbing
    Li, Xikui
    Zhang, Hongwu
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 280 : 84 - 116
  • [16] Consistent element-free Galerkin method
    Duan, Qinglin
    Gao, Xin
    Wang, Bingbing
    Li, Xikui
    Zhang, Hongwu
    Belytschko, Ted
    Shao, Yulong
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 99 (02) : 79 - 101
  • [17] Second-order accurate derivatives and integration schemes for meshfree methods
    Duan, Qinglin
    Li, Xikui
    Zhang, Hongwu
    Belytschko, Ted
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 92 (04) : 399 - 424
  • [18] Linear smoothed polygonal and polyhedral finite elements
    Francis, Amrita
    Ortiz-Bernardin, Alejandro
    Bordas, Stephane P. A.
    Natarajan, Sundararajan
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 109 (09) : 1263 - 1288
  • [19] On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes
    Gain, Arun L.
    Talischi, Cameron
    Paulino, Glaucio H.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 282 : 132 - 160
  • [20] Lee CK, 2014, EDGE BASED STRAIN SM