Linear smoothed polygonal and polyhedral finite elements

被引:89
作者
Francis, Amrita [1 ]
Ortiz-Bernardin, Alejandro [2 ]
Bordas, Stephane P. A. [3 ,4 ,5 ]
Natarajan, Sundararajan [1 ]
机构
[1] Indian Inst Technol, Dept Mech Engn, Madras 600036, Tamil Nadu, India
[2] Univ Chile, Dept Mech Engn, Ave Beauchef 851, Santiago, Chile
[3] Univ Luxembourg, Fac Sci Technol & Commun, Luxembourg, Luxembourg
[4] Cardiff Univ, Sch Engn, Theoret & Appl Mech, Cardiff CF24 3AA, S Glam, Wales
[5] Univ Western Australia, Dept Mech Engn, Nedlands, WA, Australia
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Smoothed finite element method; linear smoothing; numerical integration; patch test; polytope elements; quadratic serendipity; FEM; INTEGRATION; MESHFREE; CONVERGENCE; ACCURACY;
D O I
10.1002/nme.5324
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The strain smoothing technique over higher order elements and arbitrary polytopes yields less accurate solutions than other techniques such as the conventional polygonal finite element method. In this work, we propose a linear strain smoothing scheme that improves the accuracy of linear and quadratic approximations over convex polytopes. The main idea is to subdivide the polytope into simplicial subcells and use a linear smoothing function in each subcell to compute the strain. This new strain is then used in the computation of the stiffness matrix. The convergence properties and accuracy of the proposed scheme are discussed by solving a few benchmark problems. Numerical results show that the proposed linear strain smoothing scheme makes the approximation based on polytopes able to deliver the same optimal convergence rate as traditional quadrilateral and hexahedral approximations. The accuracy is also improved, and all the methods tested pass the patch test to machine precision. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:1263 / 1288
页数:26
相关论文
共 42 条
  • [1] [Anonymous], 2000, FINITE ELEMENT METHO
  • [2] Barber J.R., 2010, Elasticity, V3rd ed.
  • [3] Beirao da Veiga L., 2014, MATH MOD METH APPL S, V24, P1541, DOI DOI 10.1142/S021820251440003X
  • [4] A displacement-based finite element formulation for general polyhedra using harmonic shape functions
    Bishop, J. E.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 97 (01) : 1 - 31
  • [5] On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM)
    Bordas, Stephane P. A.
    Natarajan, Sundararajan
    Kerfriden, Pierre
    Augarde, Charles Edward
    Mahapatra, D. Roy
    Rabczuk, Timon
    Dal Pont, Stefano
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 86 (4-5) : 637 - 666
  • [6] On the approximation in the smoothed finite element method (SFEM)
    Bordas, Stephane P. A.
    Natarajan, Sundararajan
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 81 (05) : 660 - 670
  • [7] Strain smoothing in FEM and XFEM
    Bordas, Stephane P. A.
    Rabczuk, Timon
    Nguyen-Xuan, Hung
    Nguyen, Vinh Phu
    Natarajan, Sundararajan
    Bog, Tino
    Do Minh Quan
    Nguyen Vinh Hiep
    [J]. COMPUTERS & STRUCTURES, 2010, 88 (23-24) : 1419 - 1443
  • [8] Chen JS, 2001, INT J NUMER METH ENG, V50, P435, DOI 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO
  • [9] 2-A
  • [10] Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth
    Chen, L.
    Rabczuk, T.
    Bordas, S. P. A.
    Liu, G. R.
    Zeng, K. Y.
    Kerfriden, P.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 209 : 250 - 265