On the First and Second Critical Error Linear Complexity of Binary 2n-periodic Sequences

被引:0
作者
Chang Zuling [1 ]
Wang Xueyuan [2 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Sch Informat Engn, Zhengzhou 450001, Peoples R China
来源
CHINESE JOURNAL OF ELECTRONICS | 2013年 / 22卷 / 01期
基金
中国国家自然科学基金;
关键词
Sequence; Games-Chan algorithm; Linear complexity; Error linear complexity; SPECTRUM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies the error linear complexity of binary sequences with period 2(n). One new representation of binary sequences with period 2(n) and new interpretation of Games-Chan algorithm are given. New properties about the first critical error linear complexity and one algorithm to compute the first critical error linear complexity are given. One formula of the minimum value k for which the k-error linear complexity is strictly less than the first critical error linear complexity is provided.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 9 条
  • [1] Chang ZL, 2011, CHINESE J ELECTRON, V20, P307
  • [2] Properties of the Error Linear Complexity Spectrum
    Etzion, Tuvi
    Kalouptsidis, Nicholas
    Kolokotronis, Nicholas
    Limniotis, Konstantinos
    Paterson, Kenneth G.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (10) : 4681 - 4686
  • [3] A relationship between linear complexity and k-error linear complexity
    Kurosawa, K
    Sato, F
    Sakata, T
    Kishimoto, W
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (02) : 694 - 698
  • [4] Computing the error linear complexity spectrum of a binary sequence of period 2n
    Lauder, AGB
    Paterson, KG
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (01) : 273 - 280
  • [5] POLYNOMIAL WEIGHTS AND CODE CONSTRUCTIONS
    MASSEY, JL
    COSTELLO, DJ
    JUSTESEN, J
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (01) : 101 - 110
  • [6] MASSEY JL, 1969, IEEE T INFORM THEORY, V15, P122, DOI 10.1109/TIT.1969.1054260
  • [7] On the expected value of the linear complexity and the k-error linear complexity of periodic sequences
    Meidl, W
    Niederreiter, H
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (11) : 2817 - 2825
  • [8] RUPPEL R, 1986, ANAL DESIGN STREAM C
  • [9] AN ALGORITHM FOR THE K-ERROR LINEAR COMPLEXITY OF BINARY SEQUENCES WITH PERIOD-2(N)
    STAMP, M
    MARTIN, CF
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (04) : 1398 - 1401