Overexpression of TaHSF3 in Transgenic Arabidopsis Enhances Tolerance to Extreme Temperatures

被引:73
|
作者
Zhang, Shuangxi [1 ,2 ,3 ]
Xu, Zhao-Shi [2 ]
Li, Pansong [1 ]
Yang, Le [2 ]
Wei, Yiqin [3 ]
Chen, Ming [2 ]
Li, Liancheng [2 ]
Zhang, Gaisheng [1 ]
Ma, Youzhi [2 ]
机构
[1] Northwest A&F Univ, Coll Agr, Yangling 712100, Shaanxi, Peoples R China
[2] Chinese Acad Agr Sci CAAS, Natl Key Facil Crop Gene Resources & Genet Improv, Key Lab Biol & Genet Improvement Triticeae Crops, Inst Crop Sci,Minist Agr, Beijing 100081, Peoples R China
[3] Ningxia Acad Agr Sci, Inst Crop Sci, Ningxia 750105, Peoples R China
基金
中国国家自然科学基金;
关键词
Expression pattern; Heat shock transcription factor; Subcellular localization; Extreme temperature tolerance; Wheat; Arabidopsis; STRESS TRANSCRIPTION FACTORS; HEAT-SHOCK FACTORS; MOLECULAR CHAPERONES; FACTOR FAMILY; RESPONSIVE GENES; OVER-EXPRESSION; PROTEIN-KINASES; IDENTIFICATION; HSFA1; REGULATOR;
D O I
10.1007/s11105-012-0546-z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Heat shock factors (HSFs) in plants regulate heat stress response by mediating expression of a set of heat shock protein (HSP) genes. In the present study, we isolated a novel heat shock gene, TaHSF3, encoding a protein of 315 amino acids in wheat. Phylogenetic analysis showed that TaHSF3 belonged to HSF class B2. Subcellular localization analysis indicated that TaHSF3 localized in nuclei. TaHSF3 was highly expressed in wheat spikes and showed intermediate expression levels in roots, stems, and leaves under normal conditions. It was highly upregulated in wheat seedlings by heat and cold and to a lesser extent by drought and NaCl and ABA treatments. Overexpression of TaHSF3 in Arabidopsis enhanced tolerance to extreme temperatures. Frequency of survival of three TaHSF3 transgenic Arabidopsis lines was 75-91 % after heat treatment and 85-95 % after freezing treatment compared to 25 and 10 %, respectively, in wild-type plants (WT). Leaf chlorophyll contents of the transformants were higher (0.52-0.67 mg/g) than WT (0.35 mg/g) after heat treatment, and the relative electrical conductivities of the transformants after freezing treatment were lower (from 17.56 to 18.6 %) than those of WT (37.5 %). The TaHSF3 gene from wheat therefore confers tolerance to extreme temperatures in transgenic Arabidopsis by activating HSPs, such as HSP70.
引用
收藏
页码:688 / 697
页数:10
相关论文
共 50 条
  • [31] Overexpression of the Panax ginseng MYB4 gene enhances stress tolerance in transgenic Arabidopsis thaliana
    Lian, W. H.
    Sun, T. X.
    Meng, X. Y.
    Sun, R.
    Hui, F.
    Jiang, Y. N.
    Zhao, Y.
    BIOLOGIA PLANTARUM, 2021, 65 : 27 - 38
  • [32] Overexpression of PavbHLH28 from Prunus avium enhances tolerance to cold stress in transgenic Arabidopsis
    Cao, Xuejiao
    Wen, Zhuang
    Shen, Tianjiao
    Cai, Xiaowei
    Hou, Qiandong
    Shang, Chunqiong
    Qiao, Guang
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [33] Overexpression of the ascorbate peroxidase gene from eggplant and sponge gourd enhances flood tolerance in transgenic Arabidopsis
    Chih-Ming Chiang
    Chiu-Chen Chen
    Shi-Peng Chen
    Kuan-Hung Lin
    Li-Ru Chen
    Yu-Huei Su
    His-Cheng Yen
    Journal of Plant Research, 2017, 130 : 373 - 386
  • [34] Overexpression of cinnamyl alcohol dehydrogenase gene from sweetpotato enhances oxidative stress tolerance in transgenic Arabidopsis
    Young-Hwa Kim
    Gyung-Hye Huh
    In Vitro Cellular & Developmental Biology - Plant, 2019, 55 : 172 - 179
  • [35] Overexpression of quinone reductase from Salix matsudana Koidz enhances salt tolerance in transgenic Arabidopsis thaliana
    Song, Xixi
    Fang, Jie
    Han, Xiaojiao
    He, Xuelian
    Liu, Mingying
    Hu, Jianjun
    Zhuo, Renying
    GENE, 2016, 576 (01) : 520 - 527
  • [36] The Overexpression of Cyanidioschyzon merolae S-adenosylmethionine Synthetase Enhances Salt Tolerance in Transgenic Arabidopsis thaliana
    Sakajiri, Takayuki
    Asano, Keita
    Hirooka, Shunsuke
    Ohnuma, Mio
    Misumi, Osami
    Yoshida, Masaki
    Fujiwara, Takayuki
    Doi, Satoshi
    Kuroiwa, Haruko
    Kuroiwa, Tsuneyoshi
    CYTOLOGIA, 2010, 75 (04) : 341 - 352
  • [37] Overexpression of Cotton a DTX/MATE Gene Enhances Drought, Salt, and Cold Stress Tolerance in Transgenic Arabidopsis
    Lu, Pu
    Magwanga, Richard Odongo
    Kirungu, Joy Nyangasi
    Hu, Yangguang
    Dong, Qi
    Cai, Xiaoyan
    Zhou, Zhongli
    Wang, Xingxing
    Zhang, Zhenmei
    Hou, Yuqing
    Wang, Kunbo
    Liu, Fang
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [38] Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis
    Jung, Choonkyun
    Seo, Jun Sung
    Han, Sang Won
    Koo, Yeon Jong
    Kim, Chung Ho
    Song, Sang Ik
    Nahm, Baek Hie
    Do Choi, Yang
    Cheong, Jong-Joo
    PLANT PHYSIOLOGY, 2008, 146 (02) : 623 - 635
  • [39] Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis
    Mehari, Teame Gereziher
    Hou, Yuqing
    Xu, Yanchao
    Umer, Muhammad Jawad
    Shiraku, Margaret Linyerera
    Wang, Yuhong
    Wang, Heng
    Peng, Renhai
    Wei, Yangyang
    Cai, Xiaoyan
    Zhou, Zhongli
    Liu, Fang
    BMC GENOMICS, 2022, 23 (01)
  • [40] Overexpression of cinnamyl alcohol dehydrogenase gene from sweetpotato enhances oxidative stress tolerance in transgenic Arabidopsis
    Kim, Young-Hwa
    Huh, Gyung-Hye
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2019, 55 (02) : 172 - 179