Anti-periodic solutions for a gradient system with resonance via a variational approach

被引:2
|
作者
Tian, Yu [1 ,2 ]
Henderson, Johnny [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Baylor Univ, Dept Math, Waco, TX 76798 USA
基金
美国国家科学基金会;
关键词
Anti-periodic solution; gradient system; resonance; variational approach; dual least action principle; BOUNDARY-VALUE PROBLEM; NONAUTONOMOUS 2ND-ORDER SYSTEMS; ORDINARY DIFFERENTIAL-EQUATIONS; ANTI-PERIODIC SOLUTIONS; EVOLUTION-EQUATIONS; PARABOLIC EQUATIONS; P-LAPLACIAN; EXISTENCE; MAPPINGS;
D O I
10.1002/mana.201200110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate a second-order resonance anti-periodic boundary value problem {q(t) + lambda(m) q(t) + del F (t,q(t)) = 0, t is an element of vertical bar 0,T vertical bar, q(0) = -q(T), q(0) = -q(T), where lambda(m) is the m-th eigenvalue of the corresponding eigenvalue problem. By using the dual least action principle, we obtain an existence result. In addition, we obtain the existence of 2T-periodic solutions for q(t) + lambda(m) q(t) + del F(t, q(t)) = 0, t. R. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1537 / 1547
页数:11
相关论文
共 50 条
  • [41] Anti-periodic solutions for high-order Hopfield neural networks with impulses
    Wang, Qi
    Fang, Yayun
    Li, Hui
    Su, Lijuan
    Dai, Binxiang
    NEUROCOMPUTING, 2014, 138 : 339 - 346
  • [42] ANTI-PERIODIC SOLUTIONS FOR HIGHER-ORDER NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS
    Chen, Tai Yong
    Liu, Wen Bin
    Zhang, Jian Jun
    Zhang, Hui Xing
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (03) : 573 - 583
  • [43] Three anti-periodic solutions for second-order impulsive differential inclusions via nonsmooth critical point theory
    Tian, Yu
    Henderson, Johnny
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (18) : 6496 - 6505
  • [44] Anti-periodic solutions for semilinear evolution equations in Banach spaces
    Chen, Yuqing
    O'Regan, Donal
    Agarwal, Ravi P.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2012, 38 (1-2) : 63 - 70
  • [45] A coupled system of fractional difference equations with anti-periodic boundary conditions
    Jonnalagadda, Jagan Mohan
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (02): : 387 - 398
  • [46] Anti-periodic solutions for semilinear evolution equations in Banach spaces
    Yuqing Chen
    Donal O’Regan
    Ravi P. Agarwal
    Journal of Applied Mathematics and Computing, 2012, 38 (1-2) : 63 - 70
  • [47] Solutions for impulsive fractional pantograph differential equation via generalized anti-periodic boundary condition
    Ahmed, Idris
    Kumam, Poom
    Abubakar, Jamilu
    Borisut, Piyachat
    Sitthithakerngkiet, Kanokwan
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [48] Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities
    Aizicovici, S
    McKibben, M
    Reich, S
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (02) : 233 - 251
  • [49] Anti-periodic solutions for nonlinear evolution equations in Hilbert spaces
    Li, Y
    Cho, YJ
    Chen, YQ
    DIFFERENTIAL EQUATIONS AND APPLICATIONS, VOL 2, 2002, : 119 - 125
  • [50] Existence of anti-periodic solutions for quasilinear parabolic hemivariational inequalities
    Park, Jong Yeoul
    Ha, Tae Gab
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 3203 - 3217