Anti-periodic solutions for a gradient system with resonance via a variational approach

被引:2
|
作者
Tian, Yu [1 ,2 ]
Henderson, Johnny [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Baylor Univ, Dept Math, Waco, TX 76798 USA
基金
美国国家科学基金会;
关键词
Anti-periodic solution; gradient system; resonance; variational approach; dual least action principle; BOUNDARY-VALUE PROBLEM; NONAUTONOMOUS 2ND-ORDER SYSTEMS; ORDINARY DIFFERENTIAL-EQUATIONS; ANTI-PERIODIC SOLUTIONS; EVOLUTION-EQUATIONS; PARABOLIC EQUATIONS; P-LAPLACIAN; EXISTENCE; MAPPINGS;
D O I
10.1002/mana.201200110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate a second-order resonance anti-periodic boundary value problem {q(t) + lambda(m) q(t) + del F (t,q(t)) = 0, t is an element of vertical bar 0,T vertical bar, q(0) = -q(T), q(0) = -q(T), where lambda(m) is the m-th eigenvalue of the corresponding eigenvalue problem. By using the dual least action principle, we obtain an existence result. In addition, we obtain the existence of 2T-periodic solutions for q(t) + lambda(m) q(t) + del F(t, q(t)) = 0, t. R. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1537 / 1547
页数:11
相关论文
共 50 条