Anti-periodic solutions for a gradient system with resonance via a variational approach

被引:2
|
作者
Tian, Yu [1 ,2 ]
Henderson, Johnny [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Baylor Univ, Dept Math, Waco, TX 76798 USA
基金
美国国家科学基金会;
关键词
Anti-periodic solution; gradient system; resonance; variational approach; dual least action principle; BOUNDARY-VALUE PROBLEM; NONAUTONOMOUS 2ND-ORDER SYSTEMS; ORDINARY DIFFERENTIAL-EQUATIONS; ANTI-PERIODIC SOLUTIONS; EVOLUTION-EQUATIONS; PARABOLIC EQUATIONS; P-LAPLACIAN; EXISTENCE; MAPPINGS;
D O I
10.1002/mana.201200110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate a second-order resonance anti-periodic boundary value problem {q(t) + lambda(m) q(t) + del F (t,q(t)) = 0, t is an element of vertical bar 0,T vertical bar, q(0) = -q(T), q(0) = -q(T), where lambda(m) is the m-th eigenvalue of the corresponding eigenvalue problem. By using the dual least action principle, we obtain an existence result. In addition, we obtain the existence of 2T-periodic solutions for q(t) + lambda(m) q(t) + del F(t, q(t)) = 0, t. R. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1537 / 1547
页数:11
相关论文
共 50 条
  • [1] Anti-periodic solutions of higher order nonlinear difference equations: a variational approach
    Tian, Yu
    Henderson, Johnny
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (08) : 1380 - 1392
  • [2] Anti-periodic solutions to nonlinear evolution equations
    Liu Zhenhai
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (06) : 2026 - 2033
  • [3] Anti-periodic solutions for evolution equations associated with maximal monotone mappings
    Chen, Yuqing
    Nieto, Juan J.
    O'Regan, Donal
    APPLIED MATHEMATICS LETTERS, 2011, 24 (03) : 302 - 307
  • [4] Isolating segments and anti-periodic solutions
    Wójcik, K
    MONATSHEFTE FUR MATHEMATIK, 2002, 135 (03): : 245 - 252
  • [5] Anti-periodic solutions of Lienard equations with state dependent impulses
    Belley, J-M.
    Bondo, E.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (07) : 4164 - 4187
  • [6] Anti-periodic solutions for nonlinear evolution equations
    Cheng, Yi
    Cong, Fuzhong
    Hua, Hongtu
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [7] Anti-periodic solutions for evolution equations associated with monotone type mappings
    Chen, Yuqing
    O'Regan, Donal
    Agarwal, Ravi P.
    APPLIED MATHEMATICS LETTERS, 2010, 23 (11) : 1320 - 1325
  • [8] Mixed Equilibrium Problems and Anti-periodic Solutions for Nonlinear Evolution Equations
    Chadli, Ouayl
    Ansari, Qamrul Hasan
    Yao, Jen-Chih
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 168 (02) : 410 - 440
  • [9] Isolating Segments and Anti-Periodic Solutions
    Klaudiusz Wójcik
    Monatshefte für Mathematik, 2002, 135 : 245 - 252
  • [10] Anti-periodic solutions for nonlinear evolution inclusions
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (02) : 1025 - 1047