Organic metal engineering for enhanced field-effect transistor performance

被引:36
|
作者
Pfattner, Raphael [1 ,2 ]
Rovira, Concepcio [1 ,2 ]
Mas-Torrent, Marta [1 ,2 ]
机构
[1] Inst Ciencia Mat Barcelona ICMAB CSIC, Bellaterra 08193, Spain
[2] Networking Res Ctr Bioengn Biomat & Nanomed CIBER, Bellaterra 08193, Spain
关键词
THIN-FILM TRANSISTORS; CHARGE-TRANSFER SALTS; HIGH-MOBILITY; CONTACT RESISTANCE; SINGLE-CRYSTALS; TETRATHIAFULVALENE; PENTACENE; DEPENDENCE; INJECTION; TRANSPORT;
D O I
10.1039/c4cp03492a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A key device component in organic field-effect transistors (OFETs) is the organic semiconductor/metal interface since it has to ensure efficient charge injection. Traditionally, inorganic metals have been employed in these devices using conventional lithographic fabrication techniques. Metals with low or high work-functions have been selected depending on the type of semiconductor measured and, in some cases, the metal has been covered with molecular self-assembled monolayers to tune the work function, improve the molecular order at the interface and reduce the contact resistance. However, in the last few years, some approaches have been focused on utilizing organic metals in these devices, which have been fabricated by means of both evaporation and solution-processed techniques. Higher device performances have often been observed, which have been attributed to a range of factors, such as a more favourable organic/organic interface, a better matching of energy levels or/and to a reduction of the contact resistance. Further, in contrast to their inorganic counterparts, organic metals allow their chemical modification and thus the tuning of the Fermi level. In this perspective paper, an overview of the recent work devoted to the fabrication of OFETs with organic metals as electrodes will be carried out. It will be shown that in these devices not only is the matching of the HOMO or LUMO of the semiconductor with the metal work-function important, but other aspects such as the interface morphology can also play a critical role. Also, recent approaches in which the use of organic charge transfer salts as buffer layers at the metal contacts or on the dielectric or as doping agents of the organic semiconductors that have been used to improve the device performance will be briefly described.
引用
收藏
页码:26545 / 26552
页数:8
相关论文
共 50 条
  • [42] Interface engineering for high-performance organic field-effect transistors
    Dong, Huanli
    Jiang, Lang
    Hu, Wenping
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (41) : 14165 - 14180
  • [43] Organic field-effect transistor sensors: a tutorial review
    Torsi, Luisa
    Magliulo, Maria
    Manoli, Kyriaki
    Palazzo, Gerardo
    CHEMICAL SOCIETY REVIEWS, 2013, 42 (22) : 8612 - 8628
  • [44] Polarization effects in the channel of an organic field-effect transistor
    Houili, H.
    Picon, J.D.
    Zuppiroli, L.
    Bussac, M.N.
    Journal of Applied Physics, 2006, 100 (02):
  • [45] NOVEL ORGANIC-ON-INP FIELD-EFFECT TRANSISTOR
    CHENG, CL
    FORREST, SR
    KAPLAN, ML
    SCHMIDT, PH
    TELL, B
    APPLIED PHYSICS LETTERS, 1985, 47 (11) : 1217 - 1219
  • [46] ORGANIC N-TYPE FIELD-EFFECT TRANSISTOR
    BROWN, AR
    DELEEUW, DM
    LOUS, EJ
    HAVINGA, EE
    SYNTHETIC METALS, 1994, 66 (03) : 257 - 261
  • [47] Double-gate organic field-effect transistor
    Morana, M
    Bret, G
    Brabec, C
    APPLIED PHYSICS LETTERS, 2005, 87 (15) : 1 - 3
  • [48] A Water-Gate Organic Field-Effect Transistor
    Kergoat, Loig
    Herlogsson, Lars
    Braga, Daniele
    Piro, Benoit
    Pham, Minh-Chau
    Crispin, Xavier
    Berggren, Magnus
    Horowitz, Gilles
    ADVANCED MATERIALS, 2010, 22 (23) : 2565 - 2569
  • [49] Array of Organic Field-Effect Transistor for Advanced Sensing
    Wu, Xiaohan
    Huang, Jia
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2017, 7 (01) : 92 - 101
  • [50] FIELD-EFFECT TRANSISTOR
    GULDENPFENNIG, P
    ELEKTROTECHNISCHE ZEITSCHRIFT B-AUSGABE, 1968, 20 (17): : 474 - +