The Effect of Multilevel Carbon Reinforcements on the Fire Performance, Conductivity, and Mechanical Properties of Epoxy Composites

被引:20
|
作者
Toldy, Andrea [1 ]
Szebenyi, Gabor [1 ]
Molnar, Kolos [1 ,2 ]
Toth, Levente Ferenc [1 ,3 ]
Magyar, Balazs [1 ]
Hliva, Viktor [1 ]
Czigany, Tibor [1 ,2 ]
Szolnoki, Beata [4 ]
机构
[1] Budapest Univ Technol & Econ, Fac Mech Engn, Dept Polymer Engn, Muegyet Rkp 3-9, H-1111 Budapest, Hungary
[2] MTA BME Res Grp Composite Sci & Technol, Muegyet Rkp 3, H-1111 Budapest, Hungary
[3] Univ Ghent, Fac Engn & Architecture, Dept Elect Energy Met Mech Construct & Syst, Soete Lab, Technol Pk 903, B-9052 Zwijnaarde, Belgium
[4] Budapest Univ Technol & Econ, Fac Chem Technol & Biotechnol, Dept Organ Chem & Technol, Budafoki Ut 8, H-1111 Budapest, Hungary
关键词
carbon nanotube; carbon nanofiber; flame retardancy; thermal conductivity; carbon fiber reinforced epoxy composite; FLAME RETARDANCY; EDITORIAL CORNER; HIGH-THROUGHPUT; BEHAVIOR;
D O I
10.3390/polym11020303
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We studied the effect of a multilevel presence of carbon-based reinforcements-a combination of conventional load-bearing unidirectional carbon fiber (CF) with multiwalled carbon nanotubes (CNT) and conductive CNT-containing nonwoven carbon nanofabric (CNF(CNT))-on the fire performance, thermal conductivity, and mechanical properties of reference and flame-retarded epoxy resin (EP) composites. The inclusion of carbon fibers and flame retardant reduced the peak heat release rate (pHRR) of the epoxy resins. The extent to which the nanoreinforcements reduced the pHRR depended on their influence on thermal conductivity. Specifically, high thermal conductivity is advantageous at the early stages of degradation, but after ignition it may lead to more intensive degradation and a higher pHRR; especially in the reference samples without flame retardant. The lowest pHRR (130 kW/m(2)) and self-extinguishing V-0 UL-94 rating was achieved in the flame-retarded composite containing all three levels of carbon reinforcement (EP + CNF(CNT) + CNT + CF FR). The plasticizing effect of the liquid flame retardant impaired both the tensile and flexural properties; however, it significantly enhanced the impact resistance of the epoxy resin and its composites.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Effect of alumina nanowires on the thermal conductivity and electrical performance of epoxy composites
    Huang L.
    Lv X.
    Tang Y.
    Ge G.
    Zhang P.
    Li Y.
    Polymers, 2020, 12 (09)
  • [42] Effect of SiC and graphene nanoparticles on the mechanical properties of carbon fiber-reinforced epoxy composites
    Kosedag, Ertan
    Ekici, Recep
    Yildiz, Nail
    Caliskan, Umut
    POLYMER COMPOSITES, 2023, 44 (12) : 8578 - 8588
  • [43] Study of the synergistic effect of boron nitride and carbon nanotubes in the improvement of thermal conductivity of epoxy composites
    Isarn, Isaac
    Bonnaud, Leila
    Massagues, Lluis
    Serra, Angels
    Ferrando, Francesc
    POLYMER INTERNATIONAL, 2020, 69 (03) : 280 - 290
  • [44] Effect of matrix modification on the mechanical properties of short carbon fiber-reinforced epoxy composites
    Abu Bakar, M. A.
    Ahmad, S.
    Kuntjoro, W.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2011, 30 (04) : 357 - 361
  • [45] Mechanical properties of functionalized carbon nanotube as reinforcements
    Ling, CuiCui
    Xue, QingZhong
    Zhou, XiaoYan
    ADVANCED COMPOSITE MATERIALS AND MANUFACTURING ENGINEERING, 2012, 583 : 22 - 26
  • [46] Effect of surface modification of carbon fibers on properties of carbon/epoxy composites
    Yenier, Zafer
    Altay, Lutfiye
    Sarikanat, Mehmet
    EMERGING MATERIALS RESEARCH, 2020, 9 (01) : 110 - 118
  • [47] Tensile and conductivity properties of epoxy composites containing carbon black and graphene nanoplatelets
    Krieg, Aaron S.
    King, Julia A.
    Jaszczak, David C.
    Miskoglu, Ibrahim
    Mills, Owen P.
    Odegard, Gregory M.
    JOURNAL OF COMPOSITE MATERIALS, 2018, 52 (28) : 3909 - 3918
  • [48] Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites
    Yang, Kai
    Gu, Mingyuan
    Guo, Yiping
    Pan, Xifeng
    Mu, Guohong
    CARBON, 2009, 47 (07) : 1723 - 1737
  • [49] Degradation of Mechanical Properties of Conventional and Nanophased Carbon/Epoxy Composites in Seawater
    Hossain, M. K.
    Imran, K. A.
    Hosur, M. V.
    Jeelani, S.
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2011, 133 (04):
  • [50] Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites
    Bal, Smrutisikha
    MATERIALS & DESIGN, 2010, 31 (05) : 2406 - 2413