Nonnegative solutions of semilinear elliptic equations in half-spaces

被引:10
|
作者
Cortazar, Carmen [1 ]
Elgueta, Manuel [1 ]
Garcia-Melian, Jorge [2 ,3 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Matemat, Fac Matemat, Casilla 306,Correo 22, Santiago, Chile
[2] Univ La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
[3] Univ La Laguna, IUdEA Fis Atom Mol & Foton, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2016年 / 106卷 / 05期
关键词
Nonnegative solutions; Half-space; Moving planes; Unique continuation; Eigenvalue problems; MAXIMUM PRINCIPLE; UNBOUNDED-DOMAINS; UNIQUENESS; OPERATORS; SYMMETRY;
D O I
10.1016/j.matpur.2016.03.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the semilinear elliptic problem {-Delta u = f (u) in R-+(N) (0.1) u = 0 on partial derivative R-+(N) where the nonlinearity f is assumed to be C-1 and globally Lipschitz with f (0) < 0, and R-+(N) = {x is an element of R-N : x(N) > 0} stands for the half-space. Denoting by u(0) the unique solution of the one-dimensional problem -u '' = f(u) with u(0) = u '(0) = 0, we show that nonnegative solutions u of (0.1) which verify u(x) >= u(0)(x(N)) in R-+(N) either are positive and monotone in the x(N) direction or coincide with u(0). As a particular instance, when f (t) = t - 1, we prove that the unique nonnegative (not necessarily bounded) solution of (0.1) is u(x) = 1- cos x(N). This solves in a strengthened form a conjecture posed by Berestycki, Caffarelli and Nirenberg in 1997. (C) 2016 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:866 / 876
页数:11
相关论文
共 50 条
  • [1] Some results about semilinear elliptic problems on half-spaces
    Farina, Alberto
    MATHEMATICS IN ENGINEERING, 2020, 2 (04): : 709 - 721
  • [2] Monotonicity of solutions of quasilinear degenerate elliptic equation in half-spaces
    Farina, Alberto
    Montoro, Luigi
    Sciunzi, Berardino
    MATHEMATISCHE ANNALEN, 2013, 357 (03) : 855 - 893
  • [3] Monotonicity of solutions for some nonlocal elliptic problems in half-spaces
    Barrios, B.
    Del Pezzo, L.
    Garcia-Melian, J.
    Quaas, A.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
  • [4] Positivity and symmetry of nonnegative solutions of semilinear elliptic equations on planar domains
    Polacik, P.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (10) : 4458 - 4474
  • [5] Monotonicity of positive solutions to quasilinear elliptic equations in half-spaces with a changing-sign nonlinearity
    Esposito, Francesco
    Farina, Alberto
    Montoro, Luigi
    Sciunzi, Berardino
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (04)
  • [6] A NOTE ON THE MONOTONICITY OF SOLUTIONS FOR FRACTIONAL EQUATIONS IN HALF-SPACES
    Barrios, B.
    Garcia-Melian, J.
    Quaas, A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (07) : 3011 - 3019
  • [7] Symmetry of Nonnegative Solutions of Elliptic Equations via a Result of Serrin
    Polacik, P.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (04) : 657 - 669
  • [8] On symmetry of nonnegative solutions of elliptic equations
    Polacik, P.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (01): : 1 - 19
  • [9] Qualitative properties of nonnegative solutions of some semilinear elliptic equations in cylindrical domains
    Chen, Hongbin
    Wu, Ke
    Yao, Ruofei
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (06)
  • [10] Symmetry results for decay solutions of semilinear elliptic systems on half spaces
    Liu, Baiyu
    Ma, Li
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (06) : 3167 - 3177