Self-Assembled Complexes of Poly(4-vinylphenol) and Poly (ε-caprolactone)-block-poly(2-vinylpyridine) via Competitive Hydrogen Bonding

被引:68
作者
Hameed, Nishar [1 ]
Liu, Jing [1 ]
Guo, Qipeng [1 ]
机构
[1] Deakin Univ, Ctr Mat & Fibre Innovat, Geelong, Vic 3217, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1021/ma800703b
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Nanostructured complexes were prepared from poly(epsilon-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) and poly(4-vinylphenol) (PVPh) in tetrahydrofuran (THF). The phase behavior, specific interactions, and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared(FTIR) spectroscopy, optical microscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). In this A-b-B/C type block copolymer/homopolymer system, both blocks of the PCL-b-P2VP block copolymer have favorable intermolecular interaction toward PVPh via hydrogen bonding, but the interaction between P2VP block and PVPh is significantly stronger than that between PCL block and PVPh. It Was found that the disparity in competitive intermolecular interactions, specifically PVPh and P2VP block interact strongly whereas PVPh and PCL block interact weakly. leads to the formation of a variety of nanostructures depending on PVPh concentration. Spherical micelles of 30-40 nm in diameter were obtained in the complex with 10 wt % PVPh, Followed by wormlike micelles with size in the order of 40-50 nm in the complexes with 30-60 wt % PVPh. At low PVPh concentrations, PCL interacts weakly with PVPh, whereas in the complexes containing more than 20 wt % PVPh, the PCL block began to interact considerably with PVPh. leading to the formation of composition-dependent nanostructures. The complex becomes homogeneous with PVPh content beyond 60 wt %, since a Sufficient amount of PVPh is available to form hydrogen bonds with both PCL and P2VP. Finally, a model was proposed to explain the self-assembly and microphase morphology of these complexes based oil the experimental results obtained. The competitive hydrogen-bonding interactions cause the self-assembly and formation of different microphase morphologies.
引用
收藏
页码:7596 / 7605
页数:10
相关论文
共 64 条
[1]  
Antonietti M, 1997, TRENDS POLYM SCI, V5, P262
[2]   Block copolymers - Designer soft materials [J].
Bates, FS ;
Fredrickson, GH .
PHYSICS TODAY, 1999, 52 (02) :32-38
[3]  
Berne BJ, 2000, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics
[4]  
BRINKE G, 2007, ADV POLYM SCI, V207, P113
[5]   MISCIBILITY AND SPECIFIC INTERACTIONS IN BLENDS OF POLY(HYDROXY METHACRYLATES) WITH POLY(VINYLPYRIDINES) [J].
CESTEROS, LC ;
MEAURIO, E ;
KATIME, I .
MACROMOLECULES, 1993, 26 (09) :2323-2330
[6]  
Coleman M. M., 1991, SPECIFIC INTERACTION
[7]   FTIR STUDIES OF POLYMER BLENDS CONTAINING THE POLY(HYDROXY ETHER OF BISPHENOL-A) AND POLY(EPSILON-CAPROLACTONE) [J].
COLEMAN, MM ;
MOSKALA, EJ .
POLYMER, 1983, 24 (03) :251-257
[8]   INTERPOLYMER COMPLEXATION BETWEEN POLY(P-VINYLPHENOL) AND PYRIDINE-CONTAINING POLYMERS [J].
DAI, J ;
GOH, SH ;
LEE, SY ;
SIOW, KS .
POLYMER JOURNAL, 1994, 26 (08) :905-911
[9]   STUDY OF THE COMPATIBILITY OF BLENDS OF POLYMERS AND COPOLYMERS CONTAINING STYRENE, 4-HYDROXYSTYRENE AND 4-VINYLPYRIDINE [J].
DEMEFTAHI, MV ;
FRECHET, JMJ .
POLYMER, 1988, 29 (03) :477-482
[10]   OBSERVATION OF A NONCONSTANT MEAN-CURVATURE INTERFACE IN AN ABC TRIBLOCK COPOLYMER [J].
GIDO, SP ;
SCHWARK, DW ;
THOMAS, EL ;
GONCALVES, MD .
MACROMOLECULES, 1993, 26 (10) :2636-2640