Phase Change Material Selection in the Design of a Latent Heat Energy Storage System Coupled with a Domestic Hot Water Solar Thermal System

被引:0
|
作者
Desgrosseilliers, Louis [1 ]
Murray, Robynne [1 ]
Safatli, Alex [2 ]
Marin, Gina [1 ]
Stewart, Jeremy [1 ]
Osbourne, Nicolas [1 ]
White, Mary Anne [3 ]
Groulx, Dominic [1 ]
机构
[1] Dalhousie Univ, Dept Mech Engn, Halifax, NS, Canada
[2] Dalhousie Univ, Undergrad Chem student Chem Dept, Halifax, NS B3H 3J5, Canada
[3] Dalhousie Univ, Dept Chem, Halifax, NS B3H 3J5, Canada
来源
ASHRAE TRANSACTIONS 2011, VOL 117, PT 2 | 2011年 / 117卷
关键词
MODULES; FINS;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
Home and business users of solar domestic hot water (SDHW) heating systems are able to reduce the energy costs and greenhouse gas emissions associated with domestic hot water use. However, the level of deployment of solar thermal technologies, as retrofits and new installations, is limited by the space and weight imposed on the structures for storing the collected energy. Phase change materials (PCMs) are advantageous for daily energy storage with SDHW systems due to their high energy storage density, and mainly isothermal operation. This paper summarizes the initial steps in the development of an energy storage system using PCMs, with emphasis on the material selection and experimental studies used for proof of concept and design optimization. Lauric acid was selected as the PCM based on the melting temperature range that was targeted by studying solar data from an existing solar hot water system in Halifax, Nova Scotia. The proof of concept experiment was done using a finned tube to carry the thermal fluid; these extended surfaces were used due to the low thermal conductivity of PCMs. A validated and optimized design will be built and installed by early 2011 for a pilot study in an existing large scale solar thermal system on an apartment building in Halifax. The entire system will be instrumented in order to acquire continuous data (temperatures, flow rates, pressure, etc.) to fully characterize the system and improve on this first tested prototype.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 50 条
  • [1] Charging performance of latent thermal energy storage system with microencapsulated phase-change material for domestic hot water
    Fang, Y.
    Qu, Z. G.
    Zhang, J. F.
    Xu, H. T.
    Qi, G. L.
    ENERGY AND BUILDINGS, 2020, 224
  • [2] Design of a latent heat thermal energy storage system under simultaneous charging and discharging for solar domestic hot water applications
    Yang, Moucun
    Moghimi, M. A.
    Loillier, R.
    Markides, C. N.
    Kadivar, M.
    APPLIED ENERGY, 2023, 336
  • [3] A storage domestic solar hot water system with a back layer of phase change material
    Khalifa, Abdul Jabbar N.
    Suffer, Kadhim H.
    Mahmoud, Mahmoud Sh.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2013, 44 : 174 - 181
  • [4] Research progress of phase change energy storage in solar domestic hot water system
    Luo K.
    Ye W.
    Wang Y.
    Zeng Z.
    Liu J.
    Fei H.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (05): : 220 - 229
  • [5] Environmental Assessment of Latent Heat Thermal Energy Storage Technology System with Phase Change Material for Domestic Heating Applications
    Bernal, Daniel Choconta
    Munoz, Edmundo
    Manente, Giovanni
    Sciacovelli, Adriano
    Ameli, Hossein
    Gallego-Schmid, Alejandro
    SUSTAINABILITY, 2021, 13 (20)
  • [6] Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector
    Koca, Ahmet
    Oztop, Hakan F.
    Koyun, Tansel
    Varol, Yasin
    RENEWABLE ENERGY, 2008, 33 (04) : 567 - 574
  • [7] Corrosion assessment of erythritol as a phase change material in latent heat thermal energy storage system
    Chhabishwar Prasad Patel
    Swapnil Nikam
    Som Mondal
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 371 - 381
  • [8] Comprehensive review of phase change material based latent heat thermal energy storage system
    Gadhave, Pitambar
    Pathan, Firojkhan
    Kore, Sandeep
    Prabhune, Chandrakant
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2021, 43 (01) : 4181 - 4206
  • [9] Corrosion assessment of erythritol as a phase change material in latent heat thermal energy storage system
    Patel, Chhabishwar Prasad
    Nikam, Swapnil
    Mondal, Som
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (02) : 371 - 381
  • [10] Design and investigation of single tank phase change thermal storage domestic hot water system
    Mao, Qianjun
    Li, Ying
    Chen, Min
    CASE STUDIES IN THERMAL ENGINEERING, 2021, 25