UPSNet: A Unified Panoptic Segmentation Network

被引:299
作者
Xiong, Yuwen [1 ,2 ]
Liao, Renjie [1 ,2 ]
Zhao, Hengshuang [3 ]
Hu, Rui [1 ]
Bai, Min [1 ,2 ]
Yumer, Ersin [1 ]
Urtasun, Raquel [1 ,2 ]
机构
[1] Uber ATG, Toronto, ON, Canada
[2] Univ Toronto, Toronto, ON, Canada
[3] Chinese Univ Hong Kong, Hong Kong, Peoples R China
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
D O I
10.1109/CVPR.2019.00902
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a unified panoptic segmentation network (UPSNet) for tackling the newly proposed panoptic segmentation task. On top of a single backbone residual network, we first design a deformable convolution based semantic segmentation head and a Mask R-CNN style instance segmentation head which solve these two subtasks simultaneously. More importantly, we introduce a parameter-free panoptic head which solves the panoptic segmentation via pixel-wise classification. It first leverages the logits from the previous two heads and then innovatively expands the representation for enabling prediction of an extra unknown class which helps better resolve the conflicts between semantic and instance segmentation. Additionally, it handles the challenge caused by the varying number of instances and permits back propagation to the bottom modules in an end-to-end manner. Extensive experimental results on Cityscapes, COCO and our internal dataset demonstrate that our UPSNet achieves state-of-the-art performance with much faster inference. Code has been made available at: https://github.com/uber-research/UPSNet.
引用
收藏
页码:8810 / 8818
页数:9
相关论文
共 41 条
[1]  
[Anonymous], 2018, ARXIV181203904
[2]  
[Anonymous], 2015, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2015.7298642
[3]   Higher Order Conditional Random Fields in Deep Neural Networks [J].
Arnab, Anurag ;
Jayasumana, Sadeep ;
Zheng, Shuai ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :524-540
[4]  
Chen LC, 2014, ARXIV
[5]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[6]   Attention to Scale: Scale-aware Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Yang, Yi ;
Wang, Jiang ;
Xu, Wei ;
Yuille, Alan L. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3640-3649
[7]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[8]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[9]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773
[10]   Instance-Sensitive Fully Convolutional Networks [J].
Dai, Jifeng ;
He, Kaiming ;
Li, Yi ;
Ren, Shaoqing ;
Sun, Jian .
COMPUTER VISION - ECCV 2016, PT VI, 2016, 9910 :534-549