COVID-19 Severity Classification Using a Hierarchical Classification Deep Learning Model

被引:1
|
作者
Ortiz, Sergio [1 ]
Morales, Juan Carlos [1 ]
Rojas, Fernando [1 ]
Valenzuela, Olga [2 ]
Herrera, Luis Javier [1 ]
Rojas, Ignacio [1 ]
机构
[1] Univ Granada, Sch Informat Technol & Telecommunicat Engn, Dept Comp Architecture & Technol, Granada, Spain
[2] Univ Granada, Fac Sci, Dept Appl Math, Granada, Spain
来源
BIOINFORMATICS AND BIOMEDICAL ENGINEERING, PT I | 2022年
关键词
Deep learning; COVID-19; Predicting severity; X-Ray and CT-scans;
D O I
10.1007/978-3-031-07704-3_36
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
One of the most important situations in recent years has been originated by the 2019 Coronavirus disease (COVID-19). Nowadays this disease continues to cause a large number of deaths and remains one of the main diseases in the world. In this disease is very important the early detection to avoid the spread, as well as to monitor the progress of the disease in patients, and techniques of artificial intelligence (AI) is very useful for this. This is where this work comes from, trying to contribute in the study to detect infected patients. Drawing inspiration from previous work, we studied the use of deep learning models to detect COVID-19 and classify the patients with this disease. The work was divided into three phases to detect, evaluate the percentage of infection and classify patients of COVID-19. The initial stage use CNN Densenet-161 models pre-trained to detects the COVID-19 using multi-class X-Ray images (COVID-19 vs. No-Findings vs. Pneumonia), obtaining 88.00% in accuracy, 91.3% in precision, 87.33% in recall, and 89.00% in F1-score. The next stage also use CNN Densenet-161 models pre-trained to evidenced the percentage of infection COVID-19 in the different CT-scans slices belonging to a patient, obtaining in the evaluation metrics a result of 0.95 in PC, 5.14 in MAE and 8.47 in RMSE. The last stage creates a database of histograms of different patients using their lung infections and classifies them into different degrees of severity using K-Means unsupervised learning algorithms with PCA.
引用
收藏
页码:442 / 452
页数:11
相关论文
共 50 条
  • [1] Deep learning based classification of COVID-19 severity using hierarchical deep maxout model
    Rao, M. Surya Bhupal
    Rao, Y. Mallikarjuna
    Venkataiah, C.
    Murthy, G. L. N.
    Dharani, M.
    Jayamma, Manjula
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 88
  • [2] COVID-19 Hierarchical Classification Using a Deep Learning Multi-Modal
    Althenayan, Albatoul S.
    Alsalamah, Shada A.
    Aly, Sherin
    Nouh, Thamer
    Mahboub, Bassam
    Salameh, Laila
    Alkubeyyer, Metab
    Mirza, Abdulrahman
    SENSORS, 2024, 24 (08)
  • [3] Detection and Severity Classification of COVID-19 in CT Images Using Deep Learning
    Qiblawey, Yazan
    Tahir, Anas
    Chowdhury, Muhammad E. H.
    Khandakar, Amith
    Kiranyaz, Serkan
    Rahman, Tawsifur
    Ibtehaz, Nabil
    Mahmud, Sakib
    Maadeed, Somaya Al
    Musharavati, Farayi
    Ayari, Mohamed Arselene
    DIAGNOSTICS, 2021, 11 (05)
  • [4] Covid-19 Severity Classification Using Supervised Learning Approach
    Noor, Nurul Fathia Binti Mohamand
    Sipail, Herold Sylvestro
    Ahmad, Norulhusna
    Noor, Norliza Mohd
    1ST NATIONAL BIOMEDICAL ENGINEERING CONFERENCE (NBEC 2021): ADVANCED TECHNOLOGY FOR MODERN HEALTHCARE, 2021, : 151 - 156
  • [5] Deep stacked ensemble learning model for COVID-19 classification
    Madhu, G.
    Bharadwaj, B. Lalith
    Boddeda, Rohit
    Vardhan, Sai
    Kautish, K. Sandeep
    Alnowibet, Khalid
    Alrasheedi, Adel F.
    Mohamed, Ali Wagdy
    Computers, Materials and Continua, 2022, 70 (03): : 5467 - 5486
  • [6] Deep Stacked Ensemble Learning Model for COVID-19 Classification
    Madhu, G.
    Bharadwaj, B. Lalith
    Boddeda, Rohit
    Vardhan, Sai
    Kautish, K. Sandeep
    Alnowibet, Khalid
    Alrasheedi, Adel F.
    Mohamed, Ali Wagdy
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03): : 5467 - 5486
  • [7] DEEP LEARNING FOR MULTI-LEVEL SEVERITY CLASSIFICATION OF COVID-19 USING CT IMAGES
    Reddy, G. Venkata Rami
    Niranjan, Abboju
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2024,
  • [8] Classification of COVID-19 and Influenza Patients Using Deep Learning
    Aftab, Muhammad
    Amin, Rashid
    Koundal, Deepika
    Aldabbas, Hamza
    Alouffi, Bader
    Iqbal, Zeshan
    CONTRAST MEDIA & MOLECULAR IMAGING, 2022, 2022
  • [9] Classification of COVID-19 and Pneumonia Using Deep Transfer Learning
    Mahin, Mainuzzaman
    Tonmoy, Sajid
    Islam, Rufaed
    Tazin, Tahia
    Khan, Mohammad Monirujjaman
    Bourouis, Sami
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [10] Deep learning and lung ultrasound for Covid-19 pneumonia detection and severity classification
    La Salvia, Marco
    Secco, Gianmarco
    Torti, Emanuele
    Florimbi, Giordana
    Guido, Luca
    Lago, Paolo
    Salinaro, Francesco
    Perlini, Stefano
    Leporati, Francesco
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 136