Radial solutions of Neumann problems involving mean extrinsic curvature and periodic nonlinearities

被引:26
作者
Bereanu, Cristian [1 ]
Jebelean, Petru [2 ]
Mawhin, Jean [3 ]
机构
[1] Acad Romana, Inst Math Simion Stoilow, Bucharest 010702, Romania
[2] W Univ Timisoara, Dept Math, Timisoara 300223, Romania
[3] Catholic Univ Louvain, B-1348 Louvain, Belgium
关键词
MINKOWSKI SPACES; PHI-LAPLACIANS; OPERATORS; PENDULUM; EQUATION;
D O I
10.1007/s00526-011-0476-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that if A subset of R-N is an annulus or a ball centered at zero, the homogeneous Neumann problem on A for the equation with continuous data del.(del/nu/root 1-vertical bar del/nu vertical bar(2)) = g(vertical bar x vertical bar, nu) + h(vertical bar x vertical bar) has at least one radial solution when g(|x|, .) has a periodic indefinite integral and integral(A) h(vertical bar x vertical bar) dx = 0. The proof is based upon the direct method of the calculus of variations, variational inequalities and degree theory.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 15 条
[1]   SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE [J].
BARTNIK, R ;
SIMON, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :131-152
[2]   Periodic solutions for nonlinear equations with mean curvature-like operators [J].
Benevieri, Pierluigi ;
do O, Joao Marcos ;
de Medeiros, Everaldo Souto .
APPLIED MATHEMATICS LETTERS, 2007, 20 (05) :484-492
[3]   Periodic solutions for nonlinear systems with mean curvature-like operators [J].
Benevieri, Pierluigi ;
do O, Joao Marcos ;
de Medeiros, Everaldo Souto .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (07) :1462-1475
[4]  
Bereanu C, 2009, P AM MATH SOC, V137, P161
[5]  
Bereanu C., 2004, AN STIINT U OVIDIUS, V12, P73
[6]   Periodic solutions of nonlinear perturbations of φ-Laplacians with possibly bounded φ [J].
Bereanu, Cristian ;
Mawhin, Jean .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (06) :1668-1681
[7]   RADIAL SOLUTIONS FOR NEUMANN PROBLEMS WITH φ-LAPLACIANS AND PENDULUM-LIKE NONLINEARITIES [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Mawhin, Jean .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (02) :637-648
[8]   Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Mawhin, Jean .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (03) :379-391
[9]   Classical and non-classical solutions of a prescribed curvature equation [J].
Bonheure, Denis ;
Habets, Patrick ;
Obersnel, Franco ;
Omari, Pierpaolo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) :208-237
[10]  
Brezis H, 2010, DIFFER INTEGRAL EQU, V23, P801