Chimeric LysR-Type Transcriptional Biosensors for Customizing Ligand Specificity Profiles toward Flavonoids

被引:31
作者
De Paepe, Brecht [1 ]
Maertens, Jo [1 ]
Vanholme, Bartel [2 ]
De Mey, Marjan [1 ]
机构
[1] Univ Ghent, Ctr Synthet Biol, Coupure Links 653, B-9000 Ghent, Belgium
[2] Univ Ghent, VIB Ctr Plant Syst Biol, Dept Plant Biotechnol & Bioinformat, Technol Pk 927, B-9052 Ghent, Belgium
来源
ACS SYNTHETIC BIOLOGY | 2019年 / 8卷 / 02期
关键词
transcriptional biosensors; ligand specificity engineering; flavonoids; chimeric genetic circuits; Escherichia coli; NARINGENIN DEGRADATION; ESCHERICHIA-COLI; NODULATION GENES; TET REPRESSOR; LA-CARTE; RHIZOBIUM; NODD; LUTEOLIN; BINDING; DNA;
D O I
10.1021/acssynbio.8b00326
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Transcriptional biosensors enable key applications in both metabolic engineering and synthetic biology. Due to nature's immense variety of metabolites, these applications require biosensors with a ligand specificity profile customized to the researcher's needs. In this work, chimeric biosensors were created by introducing parts of a donor regulatory circuit from Sinorhizobium meliloti, delivering the desired luteolin-specific response, into a nonspecific biosensor chassis from Herbaspirillum seropedicae. Two strategies were evaluated for the development of chimeric LysR-type biosensors with customized ligand specificity profiles toward three closely related flavonoids, naringenin, apigenin, and luteolin. In the first strategy, chimeric promoter regions were constructed at the biosensor effector module, while in the second strategy, chimeric transcription factors were created at the biosensor detector module. Via both strategies, the biosensor repertoire was expanded with luteolin-specific chimeric biosensors demonstrating a variety of response curves and ligand specificity profiles. Starting from the nonspecific biosensor chassis, a shift from 27.5% to 95.3% luteolin specificity was achieved with the created chimeric biosensors. Both strategies provide a compelling, faster, and more accessible route for the customization of biosensor ligand specificity, compared to de novo design and construction of each biosensor circuit for every desired ligand specificity.
引用
收藏
页码:318 / 331
页数:27
相关论文
共 29 条
  • [11] Salmonella Typhimurium: Insight into the multi-faceted role of the LysR-type transcriptional regulators in Salmonella
    Lahiri, Amit
    Das, Priyanka
    Chakravortty, Dipshikha
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2009, 41 (11) : 2129 - 2133
  • [12] The LysR-type transcriptional regulator, CidR, regulates stationary phase cell death in Staphylococcus aureus
    Chaudhari, Sujata S.
    Thomas, Vinai C.
    Sadykov, Marat R.
    Bose, Jeffrey L.
    Ahn, Daniel J.
    Zimmerman, Matthew C.
    Bayles, Kenneth W.
    MOLECULAR MICROBIOLOGY, 2016, 101 (06) : 942 - 953
  • [13] The LysR-Type Transcriptional Regulator YeeY Plays Important Roles in the Regulatory of Furazolidone Resistance inAeromonas hydrophila
    Fu, Yuying
    Zhang, Lishan
    Wang, Guibin
    Lin, Yuexu
    Ramanathan, Srinivasan
    Yang, Guidi
    Lin, Wenxiong
    Lin, Xiangmin
    FRONTIERS IN MICROBIOLOGY, 2020, 11
  • [14] GvmR - A Novel LysR-Type Transcriptional Regulator Involved in Virulence and Primary and Secondary Metabolism of Burkholderia pseudomallei
    Linh Tuan Duong
    Schwarz, Sandra
    Gross, Harald
    Breitbach, Katrin
    Hochgraefe, Falko
    Mostertz, Joerg
    Eske-Pogodda, Kristin
    Wagner, Gabriel E.
    Steinmetz, Ivo
    Kohler, Christian
    FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [15] CztR, a LysR-Type Transcriptional Regulator Involved in Zinc Homeostasis and Oxidative Stress Defense in Caulobacter crescentus
    Braz, Vania S.
    da Silva Neto, Jose F.
    Italiani, Valeria C. S.
    Marques, Marilis V.
    JOURNAL OF BACTERIOLOGY, 2010, 192 (20) : 5480 - 5488
  • [16] Shikimate Induced Transcriptional Activation of Protocatechuate Biosynthesis Genes by QuiR, a LysR-Type Transcriptional Regulator, in Listeria monocytogenes
    Prezioso, Stephanie M.
    Xue, Kevin
    Leung, Nelly
    Gray-Owen, Scott D.
    Christendat, Dinesh
    JOURNAL OF MOLECULAR BIOLOGY, 2018, 430 (09) : 1265 - 1283
  • [17] Possible roles of LysR-type transcriptional regulator (LTTR) homolog as a global regulator in Cronobacter sakazakii ATCC 29544
    Choi, Younho
    Kim, Kwang-Pyo
    Kim, Kyumson
    Choi, Jeongjoon
    Shin, Hakdong
    Kang, Dong-Hyun
    Ryu, Sangryeol
    INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2012, 302 (06) : 270 - 275
  • [18] Comparative genomics reveals distinct diversification patterns among LysR-type transcriptional regulators in the ESKAPE pathogen Pseudomonas aeruginosa
    Deery, Jamie
    Carmody, Muireann
    Flavin, Rhiannon
    Tomanek, Malwina
    O'Keeffe, Maria
    Mcglacken, Gerard P.
    Reen, F. Jerry
    MICROBIAL GENOMICS, 2024, 10 (02):
  • [19] Vibrio fischeri DarR Directs Responses to D-Aspartate and Represents a Group of Similar LysR-Type Transcriptional Regulators
    Jones, Richard M., Jr.
    Popham, David L.
    Schmidt, Alicia L.
    Neidle, Ellen L.
    Stabb, Eric V.
    JOURNAL OF BACTERIOLOGY, 2018, 200 (15)
  • [20] Small-angle X-ray scattering and in silico modeling approaches for the accurate functional annotation of an LysR-type transcriptional regulator
    Toledo, M. A. S.
    Santos, C. A.
    Mendes, J. S.
    Pelloso, A. C.
    Beloti, L. L.
    Crucello, A.
    Favaro, M. T. P.
    Santiago, A. S.
    Schneider, D. R. S.
    Saraiva, A. M.
    Stach-Machado, D. R.
    Souza, A. A.
    Trivella, D. B. B.
    Aparicio, R.
    Tasic, L.
    Azzoni, A. R.
    Souza, A. P.
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2013, 1834 (03): : 697 - 707