An energy-stable convex splitting for the phase-field crystal equation

被引:59
作者
Vignal, P. [1 ,2 ]
Dalcin, L. [1 ,3 ]
Brown, D. L. [1 ]
Collier, N. [5 ]
Calo, V. M. [1 ,4 ]
机构
[1] King Abdullah Univ Sci & Technol, Ctr Numer Porous Media NumPor, Thuwal, Saudi Arabia
[2] King Abdullah Univ Sci & Technol, MSE, Thuwal, Saudi Arabia
[3] Consejo Nacl Invest Cient & Tecn, Santa Fe, Argentina
[4] King Abdullah Univ Sci & Technol, AMCS, Earth Sci & Engn ErSE, Thuwal, Saudi Arabia
[5] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA
关键词
Phase-field crystal; PetIGA; B-spline basis functions; Mixed formulation; Isogeometric analysis; Provably-stable time integration; ISOGEOMETRIC ANALYSIS; PERFORMANCE; GROWTH; CONTINUITY; SCHEME; COST;
D O I
10.1016/j.compstruc.2015.05.029
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The phase-field crystal equation, a parabolic, sixth-order and nonlinear partial differential equation, has generated considerable interest as a possible solution to problems arising in molecular dynamics. Nonetheless, solving this equation is not a trivial task, as energy dissipation and mass conservation need to be verified for the numerical solution to be valid. This work addresses these issues, and proposes a novel algorithm that guarantees mass conservation, unconditional energy stability and second-order accuracy in time. Numerical results validating our proofs are presented, and two and three dimensional simulations involving crystal growth are shown, highlighting the robustness of the method. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:355 / 368
页数:14
相关论文
共 50 条
[1]   A Review of Quantitative Phase-Field Crystal Modeling of Solid-Liquid Structures [J].
Asadi, Ebrahim ;
Zaeem, Mohsen Asle .
JOM, 2015, 67 (01) :186-201
[2]   Phase-Field Crystal Model for Fe Connected to MEAM Molecular Dynamics Simulations [J].
Asadi, Ebrahim ;
Zaeem, Mohsen Asle ;
Baskes, Michael I. .
JOM, 2014, 66 (03) :429-436
[3]   Nucleation and growth by a phase field crystal (PFC) model [J].
Backofen, R. ;
Raetz, A. ;
Voigt, A. .
PHILOSOPHICAL MAGAZINE LETTERS, 2007, 87 (11) :813-820
[4]   A phase-field-crystal approach to critical nuclei [J].
Backofen, R. ;
Voigt, A. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (36)
[5]  
Balay S, 2015, Rep. ANL-95/11-Revision 3.6
[6]   Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation [J].
Berry, Joel ;
Elder, K. R. ;
Grant, Martin .
PHYSICAL REVIEW E, 2008, 77 (06)
[7]   A phase-field description of dynamic brittle fracture [J].
Borden, Michael J. ;
Verhoosel, Clemens V. ;
Scott, Michael A. ;
Hughes, Thomas J. R. ;
Landis, Chad M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 217 :77-95
[8]  
Calo VM, 2008, SIMULATION ENG APPL
[9]   On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers [J].
Collier, N. ;
Dalcin, L. ;
Calo, V. M. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 100 (08) :620-632
[10]  
Collier N, 2013, PETIGA IGAKIT TUTORI