Quantum critical properties of a metallic spin-density-wave transition

被引:51
作者
Gerlach, Max H. [1 ]
Schattner, Yoni [2 ]
Berg, Erez [2 ]
Trebst, Simon [1 ]
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[2] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
基金
以色列科学基金会;
关键词
FERMI-LIQUID BEHAVIOR; MONTE-CARLO; SIGN-PROBLEM; T-C; MODEL; TEMPERATURE; STATE;
D O I
10.1103/PhysRevB.95.035124
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on numerically exact determinantal quantum Monte Carlo simulations of the onset of spin-densitywave (SDW) order in itinerant electron systems captured by a sign-problem-free two-dimensional lattice model. Extensive measurements of the SDW correlations in the vicinity of the phase transition reveal that the critical dynamics of the bosonic order parameter are well described by a dynamical critical exponent z = 2, consistent with Hertz-Millis theory, but are found to follow a finite-temperature dependence that does not fit the predicted behavior of the same theory. The presence of critical SDW fluctuations is found to have a strong impact on the fermionic quasiparticles, giving rise to a dome-shaped superconducting phase near the quantum critical point. In the superconducting state we find a gap function that has an opposite sign between the two bands of the model and is nearly constant along the Fermi surface of each band. Above the superconducting T-c, our numerical simulations reveal a nearly temperature and frequency independent self-energy causing a strong suppression of the low-energy quasiparticle weight in the vicinity of the hot spots on the Fermi surface. This indicates a clear breakdown of Fermi liquid theory around these points.
引用
收藏
页数:17
相关论文
共 54 条
[1]   Anomalous scaling at the quantum critical point in itinerant antiferromagnets [J].
Abanov, A ;
Chubukov, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (25)
[2]   Quantum-critical theory of the spin fermion model and its application to cuprates: normal state analysis [J].
Abanov, A ;
Chubukov, AV ;
Schmalian, J .
ADVANCES IN PHYSICS, 2003, 52 (03) :119-218
[3]   Spin-fermion model near the quantum critical point: One-loop renormalization group results [J].
Abanov, A ;
Chubukov, AV .
PHYSICAL REVIEW LETTERS, 2000, 84 (24) :5608-5611
[4]   Gap anisotropy and universal pairing scale in a spin-fluctuation model of cuprate superconductors [J].
Abanov, Ar. ;
Chubukov, A. V. ;
Norman, M. R. .
PHYSICAL REVIEW B, 2008, 78 (22)
[5]  
[Anonymous], 2016, Quantum Monte Carlo Methods: Algorithms for Lattice Models
[6]  
[Anonymous], 2011, QUANTUM PHASE TRANSI
[7]  
[Anonymous], ARXIV151204541
[8]   Progress and perspectives on electron-doped cuprates [J].
Armitage, N. P. ;
Fournier, P. ;
Greene, R. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (03) :2421-2487
[9]   Anomalous electronic structure and pseudogap effects in Nd1.85Ce0.15CuO4 -: art. no. 147003 [J].
Armitage, NP ;
Lu, DH ;
Kim, C ;
Damascelli, A ;
Shen, KM ;
Ronning, F ;
Feng, DL ;
Bogdanov, P ;
Shen, ZX ;
Onose, Y ;
Taguchi, Y ;
Tokura, Y ;
Mang, PK ;
Kaneko, N ;
Greven, M .
PHYSICAL REVIEW LETTERS, 2001, 87 (14) :147003/1-147003/4
[10]   World-line and determinantal quantum Monte Carlo methods for spins, phonons and electrons [J].
Assaad, F. F. ;
Evertz, H. G. .
COMPUTATIONAL MANY-PARTICLE PHYSICS, 2008, 739 :277-+