Model-based and Model-free Machine Learning Techniques for Diagnostic Prediction and Classification of Clinical Outcomes in Parkinson's Disease

被引:108
作者
Gao, Chao [1 ,2 ]
Sun, Hanbo [1 ,3 ]
Wang, Tuo [1 ,3 ]
Tang, Ming [1 ,2 ]
Bohnen, Nicolaas I. [4 ,5 ,6 ,7 ]
Muller, Martijn L. T. M. [4 ,5 ,6 ,7 ]
Herman, Talia [8 ]
Giladi, Nir [8 ,11 ,12 ]
Kalinin, Alexandr [1 ,7 ]
Spino, Cathie [2 ,7 ]
Dauer, William [5 ,6 ,7 ]
Hausdorff, Jeffrey M. [8 ,9 ,10 ,13 ,14 ]
Dinov, Ivo D. [1 ,7 ,15 ,16 ]
机构
[1] Univ Michigan, Stat Online Computat Resource, Dept Hlth Behav & Biol Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Neurol, Ann Arbor, MI USA
[6] Univ Michigan, Ann Arbor VA Med Ctr, Ann Arbor, MI USA
[7] Univ Michigan, Morris K Udall Ctr Excellence Parkinsons Dis Res, Ann Arbor, MI 48109 USA
[8] Tel Aviv Sourasky Med Ctr, Neurol Inst, Ctr Study Movement Cognit & Mobil, Tel Aviv, Israel
[9] Tel Aviv Univ, Sagol Sch Neurosci, Sackler Fac Med, Tel Aviv, Israel
[10] Tel Aviv Univ, Dept Phys Therapy, Sackler Fac Med, Tel Aviv, Israel
[11] Tel Aviv Univ, Sackler Sch Med, Dept Neurol, Tel Aviv, Israel
[12] Tel Aviv Univ, Sackler Sch Med, Sieratzki Chair Neurol, Tel Aviv, Israel
[13] Rush Univ, Rush Alzheimers Dis Ctr, Chicago, IL 60612 USA
[14] Rush Univ, Orthopaed Surg, Chicago, IL 60612 USA
[15] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[16] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI 48109 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
FALSE DISCOVERY RATE; NEURAL-NETWORKS; GAIT; FALLS; DIFFICULTY; INFERENCE; FEATURES; MOTOR;
D O I
10.1038/s41598-018-24783-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we apply a multidisciplinary approach to investigate falls in PD patients using clinical, demographic and neuroimaging data from two independent initiatives (University of Michigan and Tel Aviv Sourasky Medical Center). Using machine learning techniques, we construct predictive models to discriminate fallers and non-fallers. Through controlled feature selection, we identified the most salient predictors of patient falls including gait speed, Hoehn and Yahr stage, postural instability and gait difficulty-related measurements. The model-based and model-free analytical methods we employed included logistic regression, random forests, support vector machines, and XGboost. The reliability of the forecasts was assessed by internal statistical (5-fold) cross validation as well as by external out-ofbag validation. Four specific challenges were addressed in the study: Challenge 1, develop a protocol for harmonizing and aggregating complex, multisource, and multi-site Parkinson's disease data; Challenge 2, identify salient predictive features associated with specific clinical traits, e. g., patient falls; Challenge 3, forecast patient falls and evaluate the classification performance; and Challenge 4, predict tremor dominance (TD) vs. posture instability and gait difficulty (PIGD). Our findings suggest that, compared to other approaches, model-free machine learning based techniques provide a more reliable clinical outcome forecasting of falls in Parkinson's patients, for example, with a classification accuracy of about 70-80%.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] A survey of deep learning techniques based Parkinson's disease recognition methods employing clinical data
    ul Haq, Amin
    Li, Jian Ping
    Agbley, Bless Lord Y.
    Mawuli, Cobbinah Bernard
    Ali, Zafar
    Nazir, Shah
    Din, Salah Ud
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 208
  • [42] Automated Classification of Postural Control for Individuals With Parkinson's Disease Using a Machine Learning Approach: A Preliminary Study
    Li, Yumeng
    Zhang, Shuqi
    Odeh, Christina
    JOURNAL OF APPLIED BIOMECHANICS, 2020, 36 (05) : 334 - 339
  • [43] Machine Learning in Model-free Mechanical Property Imaging: Novel Integration of Physics With the Constrained Optimization Process
    Hoerig, Cameron
    Ghaboussi, Jamshid
    Wang, Yiliang
    Insana, Michael F.
    FRONTIERS IN PHYSICS, 2021, 9
  • [44] Machine Learning Model-Based Simple Clinical Information to Predict Decreased Left Atrial Appendage Flow Velocity
    Li, Chao
    Dou, Guanhua
    Ding, Yipu
    Xin, Ran
    Wang, Jing
    Guo, Jun
    Chen, Yundai
    Yang, Junjie
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (03):
  • [45] External validation of a 3-step falls prediction model in mild Parkinson’s disease
    Beata Lindholm
    Maria H. Nilsson
    Oskar Hansson
    Peter Hagell
    Journal of Neurology, 2016, 263 : 2462 - 2469
  • [46] External validation of a 3-step falls prediction model in mild Parkinson's disease
    Lindholm, Beata
    Nilsson, Maria H.
    Hansson, Oskar
    Hagell, Peter
    JOURNAL OF NEUROLOGY, 2016, 263 (12) : 2462 - 2469
  • [47] Trailer Mass Estimation Using System Model-Based and Machine Learning Approaches
    Korayem, Amin Habibnejad
    Khajepour, Amir
    Fidan, Baris
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (11) : 12536 - 12546
  • [48] Survey of Machine Learning Techniques in the Analysis of EEG Signals for Parkinson's Disease: A Systematic Review
    Maitin, Ana M.
    Romero Munoz, Juan Pablo
    Jose Garcia-Tejedor, Alvaro
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [49] Model-free causality analysis of cardiovascular variability detects the amelioration of autonomic control in Parkinson's disease patients undergoing mechanical stimulation
    Bassani, Tito
    Bari, Vlasta
    Marchi, Andrea
    Tassin, Stefano
    Dalla Vecchia, Laura
    Canesi, Margherita
    Barbic, Franca
    Furlan, Raffaello
    Porta, Alberto
    PHYSIOLOGICAL MEASUREMENT, 2014, 35 (07) : 1397 - 1408
  • [50] Stability Evaluation of Brain Changes in Parkinson's Disease Based on Machine Learning
    Song, Chenggang
    Zhao, Weidong
    Jiang, Hong
    Liu, Xiaoju
    Duan, Yumei
    Yu, Xiaodong
    Yu, Xi
    Zhang, Jian
    Kui, Jingyue
    Liu, Chang
    Tang, Yiqian
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2021, 15