Model-based and Model-free Machine Learning Techniques for Diagnostic Prediction and Classification of Clinical Outcomes in Parkinson's Disease

被引:118
作者
Gao, Chao [1 ,2 ]
Sun, Hanbo [1 ,3 ]
Wang, Tuo [1 ,3 ]
Tang, Ming [1 ,2 ]
Bohnen, Nicolaas I. [4 ,5 ,6 ,7 ]
Muller, Martijn L. T. M. [4 ,5 ,6 ,7 ]
Herman, Talia [8 ]
Giladi, Nir [8 ,11 ,12 ]
Kalinin, Alexandr [1 ,7 ]
Spino, Cathie [2 ,7 ]
Dauer, William [5 ,6 ,7 ]
Hausdorff, Jeffrey M. [8 ,9 ,10 ,13 ,14 ]
Dinov, Ivo D. [1 ,7 ,15 ,16 ]
机构
[1] Univ Michigan, Stat Online Computat Resource, Dept Hlth Behav & Biol Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Neurol, Ann Arbor, MI USA
[6] Univ Michigan, Ann Arbor VA Med Ctr, Ann Arbor, MI USA
[7] Univ Michigan, Morris K Udall Ctr Excellence Parkinsons Dis Res, Ann Arbor, MI 48109 USA
[8] Tel Aviv Sourasky Med Ctr, Neurol Inst, Ctr Study Movement Cognit & Mobil, Tel Aviv, Israel
[9] Tel Aviv Univ, Sagol Sch Neurosci, Sackler Fac Med, Tel Aviv, Israel
[10] Tel Aviv Univ, Dept Phys Therapy, Sackler Fac Med, Tel Aviv, Israel
[11] Tel Aviv Univ, Sackler Sch Med, Dept Neurol, Tel Aviv, Israel
[12] Tel Aviv Univ, Sackler Sch Med, Sieratzki Chair Neurol, Tel Aviv, Israel
[13] Rush Univ, Rush Alzheimers Dis Ctr, Chicago, IL 60612 USA
[14] Rush Univ, Orthopaed Surg, Chicago, IL 60612 USA
[15] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[16] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI 48109 USA
关键词
FALSE DISCOVERY RATE; NEURAL-NETWORKS; GAIT; FALLS; DIFFICULTY; INFERENCE; FEATURES; MOTOR;
D O I
10.1038/s41598-018-24783-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we apply a multidisciplinary approach to investigate falls in PD patients using clinical, demographic and neuroimaging data from two independent initiatives (University of Michigan and Tel Aviv Sourasky Medical Center). Using machine learning techniques, we construct predictive models to discriminate fallers and non-fallers. Through controlled feature selection, we identified the most salient predictors of patient falls including gait speed, Hoehn and Yahr stage, postural instability and gait difficulty-related measurements. The model-based and model-free analytical methods we employed included logistic regression, random forests, support vector machines, and XGboost. The reliability of the forecasts was assessed by internal statistical (5-fold) cross validation as well as by external out-ofbag validation. Four specific challenges were addressed in the study: Challenge 1, develop a protocol for harmonizing and aggregating complex, multisource, and multi-site Parkinson's disease data; Challenge 2, identify salient predictive features associated with specific clinical traits, e. g., patient falls; Challenge 3, forecast patient falls and evaluate the classification performance; and Challenge 4, predict tremor dominance (TD) vs. posture instability and gait difficulty (PIGD). Our findings suggest that, compared to other approaches, model-free machine learning based techniques provide a more reliable clinical outcome forecasting of falls in Parkinson's patients, for example, with a classification accuracy of about 70-80%.
引用
收藏
页数:21
相关论文
共 58 条
[1]   Discriminating cognitive status in Parkinson's disease through functional connectomics and machine learning [J].
Abos, Alexandra ;
Baggio, Hugo C. ;
Segura, Barbara ;
Garcia-Diaz, Anna I. ;
Compta, Yaroslau ;
Marti, Maria Jose ;
Valldeoriola, Francesc ;
Junque, Carme .
SCIENTIFIC REPORTS, 2017, 7
[2]   Artificial neural networks for decision-making in urologic oncology [J].
Anagnostou, T ;
Remzi, M ;
Lykourinas, M ;
Djavan, D .
EUROPEAN UROLOGY, 2003, 43 (06) :596-603
[3]   Deep learning for computational biology [J].
Angermueller, Christof ;
Parnamaa, Tanel ;
Parts, Leopold ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (07)
[4]  
[Anonymous], GEN LASSO NONLINEAR
[5]  
[Anonymous], 2016, ARXIV PREPRINT ARXIV
[6]   CONTROLLING THE FALSE DISCOVERY RATE VIA KNOCKOFFS [J].
Barber, Rina Foygel ;
Candes, Emmanuel J. .
ANNALS OF STATISTICS, 2015, 43 (05) :2055-2085
[7]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[8]   Objective characterization of daily living transitions in patients with Parkinson's disease using a single body-fixed sensor [J].
Bernad-Elazari, Hagar ;
Herman, Talia ;
Mirelman, Anat ;
Gazit, Eran ;
Giladi, Nir ;
Hausdorff, Jeffrey M. .
JOURNAL OF NEUROLOGY, 2016, 263 (08) :1544-1551
[9]   Prospective assessment of falls in Parkinson's disease [J].
Bloem, BR ;
Grimbergen, YAM ;
Cramer, M ;
Willemsen, M ;
Zwinderman, AH .
JOURNAL OF NEUROLOGY, 2001, 248 (11) :950-958
[10]   History of falls in Parkinson disease is associated with reduced cholinergic activity [J].
Bohnen, N. I. ;
Mueller, M. L. T. M. ;
Koeppe, R. A. ;
Studenski, S. A. ;
Kilbourn, M. A. ;
Frey, K. A. ;
Albin, R. L. .
NEUROLOGY, 2009, 73 (20) :1670-1676