Model-based and Model-free Machine Learning Techniques for Diagnostic Prediction and Classification of Clinical Outcomes in Parkinson's Disease

被引:106
|
作者
Gao, Chao [1 ,2 ]
Sun, Hanbo [1 ,3 ]
Wang, Tuo [1 ,3 ]
Tang, Ming [1 ,2 ]
Bohnen, Nicolaas I. [4 ,5 ,6 ,7 ]
Muller, Martijn L. T. M. [4 ,5 ,6 ,7 ]
Herman, Talia [8 ]
Giladi, Nir [8 ,11 ,12 ]
Kalinin, Alexandr [1 ,7 ]
Spino, Cathie [2 ,7 ]
Dauer, William [5 ,6 ,7 ]
Hausdorff, Jeffrey M. [8 ,9 ,10 ,13 ,14 ]
Dinov, Ivo D. [1 ,7 ,15 ,16 ]
机构
[1] Univ Michigan, Stat Online Computat Resource, Dept Hlth Behav & Biol Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Neurol, Ann Arbor, MI USA
[6] Univ Michigan, Ann Arbor VA Med Ctr, Ann Arbor, MI USA
[7] Univ Michigan, Morris K Udall Ctr Excellence Parkinsons Dis Res, Ann Arbor, MI 48109 USA
[8] Tel Aviv Sourasky Med Ctr, Neurol Inst, Ctr Study Movement Cognit & Mobil, Tel Aviv, Israel
[9] Tel Aviv Univ, Sagol Sch Neurosci, Sackler Fac Med, Tel Aviv, Israel
[10] Tel Aviv Univ, Dept Phys Therapy, Sackler Fac Med, Tel Aviv, Israel
[11] Tel Aviv Univ, Sackler Sch Med, Dept Neurol, Tel Aviv, Israel
[12] Tel Aviv Univ, Sackler Sch Med, Sieratzki Chair Neurol, Tel Aviv, Israel
[13] Rush Univ, Rush Alzheimers Dis Ctr, Chicago, IL 60612 USA
[14] Rush Univ, Orthopaed Surg, Chicago, IL 60612 USA
[15] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[16] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI 48109 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
FALSE DISCOVERY RATE; NEURAL-NETWORKS; GAIT; FALLS; DIFFICULTY; INFERENCE; FEATURES; MOTOR;
D O I
10.1038/s41598-018-24783-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we apply a multidisciplinary approach to investigate falls in PD patients using clinical, demographic and neuroimaging data from two independent initiatives (University of Michigan and Tel Aviv Sourasky Medical Center). Using machine learning techniques, we construct predictive models to discriminate fallers and non-fallers. Through controlled feature selection, we identified the most salient predictors of patient falls including gait speed, Hoehn and Yahr stage, postural instability and gait difficulty-related measurements. The model-based and model-free analytical methods we employed included logistic regression, random forests, support vector machines, and XGboost. The reliability of the forecasts was assessed by internal statistical (5-fold) cross validation as well as by external out-ofbag validation. Four specific challenges were addressed in the study: Challenge 1, develop a protocol for harmonizing and aggregating complex, multisource, and multi-site Parkinson's disease data; Challenge 2, identify salient predictive features associated with specific clinical traits, e. g., patient falls; Challenge 3, forecast patient falls and evaluate the classification performance; and Challenge 4, predict tremor dominance (TD) vs. posture instability and gait difficulty (PIGD). Our findings suggest that, compared to other approaches, model-free machine learning based techniques provide a more reliable clinical outcome forecasting of falls in Parkinson's patients, for example, with a classification accuracy of about 70-80%.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] The role of training variability for model-based and model-free learning of an arbitrary visuomotor mapping
    Velazquez-Vargas, Carlos A.
    Daw, Nathaniel D.
    Taylor, Jordan A.
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (09)
  • [2] Machine learning model comparison for freezing of gait prediction in advanced Parkinson's disease
    Watts, Jeremy
    Niethammer, Martin
    Khojandi, Anahita
    Ramdhani, Ritesh
    FRONTIERS IN AGING NEUROSCIENCE, 2024, 16
  • [3] Model-Free and Model-Based Policy Evaluation when Causality is Uncertain
    Bruns-Smith, David
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [4] Separate encoding of model-based and model-free valuations in the human brain
    Beierholm, Ulrik R.
    Anen, Cedric
    Quartz, Steven
    Bossaerts, Peter
    NEUROIMAGE, 2011, 58 (03) : 955 - 962
  • [5] Comprehensive clinical scale-based machine learning model for predicting subthalamic nucleus deep brain stimulation outcomes in Parkinson's disease
    Chang, Bowen
    Geng, Zhi
    Guo, Tao
    Mei, Jiaming
    Xiong, Chi
    Chen, Peng
    Liu, Mingxing
    Niu, Chaoshi
    NEUROSURGICAL REVIEW, 2025, 48 (01)
  • [6] Continuous Prediction of Human Joint Mechanics Using EMG Signals: A Review of Model-Based and Model-Free Approaches
    Sitole, Soumitra P.
    Sup, Frank C.
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2023, 5 (03): : 528 - 546
  • [7] Oscillator-based assistance of cyclical movements: model-based and model-free approaches
    Ronsse, Renaud
    Lenzi, Tommaso
    Vitiello, Nicola
    Koopman, Bram
    van Asseldonk, Edwin
    De Rossi, Stefano Marco Maria
    van den Kieboom, Jesse
    van der Kooij, Herman
    Carrozza, Maria Chiara
    Ijspeert, Auke Jan
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2011, 49 (10) : 1173 - 1185
  • [8] Model-free machine learning of wireless SISO/MIMO communications
    Garcia, Dolores
    Lacruz, Jesus O.
    Badini, Damiano
    De Donno, Danilo
    Widmer, Joerg
    COMPUTER COMMUNICATIONS, 2022, 181 : 192 - 202
  • [9] Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke
    Heo, JoonNyung
    Yoon, Jihoon G.
    Park, Hyungjong
    Kim, Young Dae
    Nam, Hyo Suk
    Heo, Ji Hoe
    STROKE, 2019, 50 (05) : 1263 - 1265
  • [10] Model-based and model-free collision detection and identification for a parallel Delta robot with uncertainties
    Pham, Phu-Cuong
    Kuo, Yong-Lin
    CONTROL ENGINEERING PRACTICE, 2023, 139