Integrable equations arising from motions of plane curves

被引:167
作者
Chou, KS [1 ]
Qu, CZ
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] NW Univ Xian, Dept Math, Xian 710069, Peoples R China
基金
美国国家科学基金会;
关键词
integrable equations; motion of plane curves; Klein geometry; Lie algebra; traveling wave;
D O I
10.1016/S0167-2789(01)00364-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The motion of plane curves in Klein geometry is studied. It is shown that the KdV, Harry-Dym, Sawada-Kotera, Burgers, the defocusing mKdV hierarchies, the Camassa-Holm and the Kaup-Kupershmidt equation naturally arise from the motions of plane curves in SL(2)-, Sim(2)-, SA(2)- and A(2) -geometries. These local and nonlocal dynamics conserve global geometric quantities of curves such as perimeter and enclosed area. Motions of curves in Euclidean, special linear and similarity geometries corresponding to the traveling wave solutions of the mKdV, KdV and Burgers equations are discussed. (C) 2002 Elsevier Science B.V All rights reserved.
引用
收藏
页码:9 / 33
页数:25
相关论文
共 35 条
[1]  
Ablowitz M A., 1991, Solitons, nonlinear evolution equations and inverse scattering, DOI [10.1017/CBO9780511623998, DOI 10.1017/CBO9780511623998]
[2]  
Ablowitz M. J., 1981, SOLITONS INVERSE SCA
[3]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[4]   GEOMETRICAL MODELS OF INTERFACE EVOLUTION [J].
BROWER, RC ;
KESSLER, DA ;
KOPLIK, J ;
LEVINE, H .
PHYSICAL REVIEW A, 1984, 29 (03) :1335-1342
[5]   NEW HIERARCHY OF KORTEWEG-DEVRIES EQUATIONS [J].
CAUDREY, PJ ;
DODD, RK ;
GIBBON, JD .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1976, 351 (1666) :407-422
[6]  
Chou K. S., 2001, CURVE SHORTENING PRO
[7]   AN ELEMENTARY GEOMETRIC CHARACTERIZATION OF THE INTEGRABLE MOTIONS OF A CURVE [J].
DOLIWA, A ;
SANTINI, PM .
PHYSICS LETTERS A, 1994, 185 (04) :373-384
[8]   THE BI-HAMILTONIAN STRUCTURE OF SOME NON-LINEAR 5TH-ORDER AND 7TH-ORDER DIFFERENTIAL-EQUATIONS AND RECURSION FORMULAS FOR THEIR SYMMETRIES AND CONSERVED COVARIANTS [J].
FUCHSSTEINER, B ;
OEVEL, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (03) :358-363
[9]   SOLITONS, EULER EQUATION, AND VORTEX PATCH DYNAMICS [J].
GOLDSTEIN, RE ;
PETRICH, DM .
PHYSICAL REVIEW LETTERS, 1992, 69 (04) :555-558
[10]   THE KORTEWEG-DEVRIES HIERARCHY AS DYNAMICS OF CLOSED CURVES IN THE PLANE [J].
GOLDSTEIN, RE ;
PETRICH, DM .
PHYSICAL REVIEW LETTERS, 1991, 67 (23) :3203-3206