Analysis of MCMC algorithms for Bayesian linear regression with Laplace errors

被引:14
|
作者
Choi, Hee Min [1 ]
Hobert, James P. [1 ]
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Asymmetric Laplace distribution; Data augmentation algorithm; Eigenvalues; Geometric convergence rate; Markov chain; Markov operator; Monte Carlo; Sandwich algorithm; Trace-class operator; CHAIN MONTE-CARLO; QUANTILE REGRESSION; DATA AUGMENTATION; GIBBS SAMPLER; MODELS;
D O I
10.1016/j.jmva.2013.02.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let pi denote the intractable posterior density that results when the standard default prior is placed on the parameters in a linear regression model with iid Laplace errors. We analyze the Markov chains underlying two different Markov chain Monte Carlo algorithms for exploring pi. In particular, it is shown that the Markov operators associated with the data augmentation (DA) algorithm and a sandwich variant are both trace-class. Consequently, both Markov chains are geometrically ergodic. It is also established that for each i is an element of (1, 2, 3, ...}, the ith largest eigenvalue of the sandwich operator is less than or equal to the corresponding eigenvalue of the DA operator. It follows that the sandwich algorithm converges at least as fast as the DA algorithm. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:32 / 40
页数:9
相关论文
共 50 条
  • [31] Algorithms for Generalized Clusterwise Linear Regression
    Park, Young Woong
    Jiang, Yan
    Klabjan, Diego
    Williams, Loren
    INFORMS JOURNAL ON COMPUTING, 2017, 29 (02) : 301 - 317
  • [32] Functional Partial Linear Regression with Autoregressive Errors
    Chen, Longzhou
    Wang, Guochang
    Zhang, Baoxue
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2025,
  • [33] Shrinkage estimation for linear regression with ARMA errors
    Wu, Rongning
    Wang, Qin
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) : 2136 - 2148
  • [34] Bayesian analysis of a Tobit quantile regression model
    Yu, Keming
    Stander, Julian
    JOURNAL OF ECONOMETRICS, 2007, 137 (01) : 260 - 276
  • [35] Partial functional linear regression with autoregressive errors
    Xiao, Piaoxuan
    Wang, Guochang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (13) : 4515 - 4536
  • [36] Robust mixture multivariate linear regression by multivariate Laplace distribution
    Li, Xiongya
    Bai, Xiuqin
    Song, Weixing
    STATISTICS & PROBABILITY LETTERS, 2017, 130 : 32 - 39
  • [37] Bayesian quantile regression for hierarchical linear models
    Yu, Yang
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (17) : 3451 - 3467
  • [38] Safe-Bayesian Generalized Linear Regression
    de Heide, Rianne
    Kirichenko, Alisa
    Mehta, Nishant A.
    Grunwald, Peter D.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2623 - 2632
  • [39] Posterior convergence for Bayesian functional linear regression
    Lian, Heng
    Choi, Taeryon
    Meng, Jie
    Jo, Seongil
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 150 : 27 - 41
  • [40] On computational aspects of Bayesian spatial models: influence of the neighboring structure in the efficiency of MCMC algorithms
    Mayrink, Vinicius Diniz
    Gamerman, Dani
    COMPUTATIONAL STATISTICS, 2009, 24 (04) : 641 - 669