The effect of magnetic susceptibility and magnetic field strength on porosity estimates determined from low-field nuclear magnetic resonance

被引:15
|
作者
Keating, Kristina [1 ]
Walsh, David O. [2 ]
Grunewald, Elliot [2 ]
机构
[1] Rutgers State Univ, Dept Earth & Environm Sci, 101 Warren St,Smith Hall Room 135, Newark, NJ 07102 USA
[2] Vista Clara Inc, 12201 Cyrus Way 104, Mukilteo, WA 98275 USA
关键词
PARTICLE-SIZE DISTRIBUTION; SOIL; DISTRIBUTIONS; WATER; INHOMOGENEITY; PERMEABILITY; MODEL;
D O I
10.1016/j.jappgeo.2020.104096
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The presence of materials with high magnetic susceptibility are known to have an impact on H-1 nuclear magnetic resonance (NMR) measurements and in laboratory data this often results in poor estimates of porosity from NMR data. To quantify and understand the cause of the poor NMR porosity estimations, in this laboratory study, we examine the effect of magnetic susceptibility, NMR measurement parameters, and NMR instrument design on NMR measurements. Data were collected with two instruments, each with a different Larmor frequency (2MHz and 485 kHz), on water-saturated unconsolidated sediments with magnetic susceptibility values ranging from 3.6 x 10(-6) to 7020 x 10(-6) SI. The results show that for materials with low magnetic susceptibility (<378 x 10(-6) SI), the gravimetric porosity is accurately predicted from the NMR measurements. For the samples with high magnetic susceptibility (>987 x 10(-6) SI) the gravimetric porosity is poorly predicted from the 2MHz NMR measurements made at all echo times (from 0.2 to 3.0 ms). In contrast, the gravimetric porosity is more accurately predicted at an echo time of 0.2 ms for measurements made using the 485 kHz instrument, although at larger echo times (>1.0 ms), the porosity estimate becomes poor. The 485 kHz NMR instrument has non-zero internal magnetic field gradients, similar to those found in borehole instruments, in contrast to the 2MHz NMR instrument, which has a homogeneous applied magnetic field. We conclude that differences is the magnetic field strength and higher magnetic field inhomogeneities in the 485 kHz NMR instrument contribute to a reduction of the impact of inhomogeneities in the magnetic field caused by materials with high magnetic susceptibility, allowing for improved porosity estimation. These results indicate that NMR measurements collected at short echo times in low, inhomogeneous static fields, e.g., borehole instruments, may provide accurate estimates of porosity in water saturated sediments, even in the presence of magnetic minerals. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Soil wettability as determined from using low-field nuclear magnetic resonance
    Manalo, FP
    Kantzas, A
    Langford, CH
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (12) : 2701 - 2706
  • [2] LOW-FIELD NUCLEAR MAGNETIC RESONANCE SPECTROMETER
    MITCHELL, RW
    EISNER, M
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1957, 28 (08): : 624 - 628
  • [3] Effective porosity in lignite using kerosene with low-field nuclear magnetic resonance
    Xu, Hao
    Tang, Dazhen
    Chen, Yanpeng
    Ming, Ying
    Chen, Xiangyang
    Qu, Haoxin
    Yuan, Yunxing
    Li, Song
    Tao, Shu
    FUEL, 2018, 213 : 158 - 163
  • [4] Porosity and Permeability Models for Coals Using Low-Field Nuclear Magnetic Resonance
    Li, Song
    Tang, Dazhen
    Xu, Hao
    Yang, Zi
    Guo, Lele
    ENERGY & FUELS, 2012, 26 (08) : 5005 - 5014
  • [5] Static weak magnetic field measurements based on low-field nuclear magnetic resonance
    Wang, Xiaofei
    Zhu, Maohua
    Xiao, Kangda
    Guo, Jun
    Wang, Li
    JOURNAL OF MAGNETIC RESONANCE, 2019, 307
  • [6] LOW-FIELD MAGNETIC RESONANCE
    GARSTENS, MA
    KAPLAN, JI
    PHYSICAL REVIEW, 1955, 99 (02): : 459 - 463
  • [7] An empirical method to correct nuclear magnetic resonance porosity of tight sandstone using low-field nuclear magnetic resonance data
    Ge, Xinmin
    Fan, Yiren
    Liu, Jianyu
    Xing, Donghui
    Xu, Hongjun
    Hu, Falong
    AAPG BULLETIN, 2023, 107 (04) : 539 - 551
  • [8] Progress in miniaturization and low-field nuclear magnetic resonance
    Anders, Jens
    Dreyer, Frederik
    Krueger, Daniel
    Schwartz, Ilai
    Plenio, Martin B.
    Jelezko, Fedor
    JOURNAL OF MAGNETIC RESONANCE, 2021, 322
  • [9] Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems
    Gaunkar, Neelam Prabhu
    Selvaraj, Jayaprakash
    Theh, Wei-Shen
    Weber, Robert
    Mina, Mani
    AIP ADVANCES, 2018, 8 (05)
  • [10] Low-field variation of magnetic susceptibility and its effect on the anisotropy of magnetic susceptibility of rocks
    Hrouda, F
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2002, 150 (03) : 715 - 723