Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters

被引:85
作者
Can, Adem [1 ,4 ]
Zanos, Panos [1 ]
Moaddel, Ruin [5 ]
Kang, Hye Jin [6 ]
Dossou, Katinia S. S. [5 ]
Wainer, Irving W. [5 ,7 ]
Cheer, Joseph F. [1 ,3 ]
Frost, Douglas O. [1 ,2 ]
Huang, Xi-Ping [6 ]
Gould, Todd D. [1 ,2 ,3 ]
机构
[1] Univ Maryland, Sch Med, Dept Psychiat, Room 936 MSTF,685 West Baltimore St, Baltimore, MD 21201 USA
[2] Univ Maryland, Sch Med, Dept Pharmacol, Baltimore, MD 21201 USA
[3] Univ Maryland, Sch Med, Dept Anat & Neurobiol, Baltimore, MD 21201 USA
[4] Notre Dame Maryland Univ, Dept Psychol, Baltimore, MD USA
[5] NIA, Biomed Res Ctr, NIH, Baltimore, MD 21224 USA
[6] Univ N Carolina, Sch Med, Natl Inst Mental Hlth, Dept Pharmacol,Psychoact Drug Screening Program, Chapel Hill, NC USA
[7] Mitchell Woods Pharmaceut, Shelton, CT USA
关键词
METHYL-D-ASPARTATE; RAT PREFRONTAL CORTEX; ANTIDEPRESSANT EFFICACY; NMDA ANTAGONIST; IN-VITRO; DEPRESSION; SEROTONIN; NEURONS; MK-801; INHIBITION;
D O I
10.1124/jpet.116.235838
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine's antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-D-aspartate glutamate receptor inhibition. These antidepressant actions of (2S, 6S; 2R, 6R)- HNK, or other metabolites, as well as ketamine's side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1-D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine's enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters ( up to 10 mu M). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect.
引用
收藏
页码:159 / 170
页数:12
相关论文
共 73 条
[1]   Ketamine does not decrease striatal dopamine D2 receptor binding in man [J].
Aalto, S ;
Hirvonen, J ;
Kajander, J ;
Scheinin, H ;
Någren, K ;
Vilkman, H ;
Gustafsson, L ;
Syvälahti, E ;
Hietala, J .
PSYCHOPHARMACOLOGY, 2002, 164 (04) :401-406
[2]   Safety and Efficacy of Repeated-Dose Intravenous Ketamine for Treatment-Resistant Depression [J].
aan het Rot, Marije ;
Collins, Katherine A. ;
Murrough, James W. ;
Perez, Andrew M. ;
Reich, David L. ;
Charney, Dennis S. ;
Mathew, Sanjay J. .
BIOLOGICAL PSYCHIATRY, 2010, 67 (02) :139-145
[3]   STUDIES ON THE BIOTRANSFORMATION OF KETAMINE .1. IDENTIFICATION OF METABOLITES PRODUCED INVITRO FROM RAT-LIVER MICROSOMAL PREPARATIONS [J].
ADAMS, JD ;
BAILLIE, TA ;
TREVOR, AJ ;
CASTAGNOLI, N .
BIOMEDICAL MASS SPECTROMETRY, 1981, 8 (11) :527-538
[4]   Restoring Mood Balance in Depression: Ketamine Reverses Deficit in Dopamine-Dependent Synaptic Plasticity [J].
Belujon, Pauline ;
Grace, Anthony A. .
BIOLOGICAL PSYCHIATRY, 2014, 76 (12) :927-936
[5]   Antidepressant effects of ketamine in depressed patients [J].
Berman, RM ;
Cappiello, A ;
Anand, A ;
Oren, DA ;
Heninger, GR ;
Charney, DS ;
Krystal, JH .
BIOLOGICAL PSYCHIATRY, 2000, 47 (04) :351-354
[6]   Automated design of ligands to polypharmacological profiles [J].
Besnard, Jeremy ;
Ruda, Gian Filippo ;
Setola, Vincent ;
Abecassis, Keren ;
Rodriguiz, Ramona M. ;
Huang, Xi-Ping ;
Norval, Suzanne ;
Sassano, Maria F. ;
Shin, Antony I. ;
Webster, Lauren A. ;
Simeons, Frederick R. C. ;
Stojanovski, Laste ;
Prat, Annik ;
Seidah, Nabil G. ;
Constam, Daniel B. ;
Bickerton, G. Richard ;
Read, Kevin D. ;
Wetsel, William C. ;
Gilbert, Ian H. ;
Roth, Bryan L. ;
Hopkins, Andrew L. .
NATURE, 2012, 492 (7428) :215-+
[7]   THE GLYCINE NMDA RECEPTOR ANTAGONIST, R-(+)-HA-966, BLOCKS ACTIVATION OF THE MESOLIMBIC DOPAMINERGIC SYSTEM INDUCED BY PHENCYCLIDINE AND DIZOCILPINE (MK-801) IN RODENTS [J].
BRISTOW, LJ ;
HUTSON, PH ;
THORN, L ;
TRICKLEBANK, MD .
BRITISH JOURNAL OF PHARMACOLOGY, 1993, 108 (04) :1156-1163
[8]   Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants [J].
Browne, Caroline A. ;
Lucki, Irwin .
FRONTIERS IN PHARMACOLOGY, 2013, 4
[9]   THE NMDA ANTAGONIST MK-801 CAUSES MARKED LOCOMOTOR STIMULATION IN MONOAMINE-DEPLETED MICE [J].
CARLSSON, M ;
CARLSSON, A .
JOURNAL OF NEURAL TRANSMISSION, 1989, 75 (03) :221-226
[10]  
CHENG Y, 1973, BIOCHEM PHARMACOL, V22, P3099