Choices, intervals and equidistribution

被引:2
作者
Junge, Matthew [1 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2015年 / 20卷
基金
美国国家科学基金会;
关键词
interval splitting; random algorithm; equidistribution; subdivision; max-2; power of choice; balls and bins; SUBDIVISION;
D O I
10.1214/EJP.v20-4191
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give a sufficient condition for a random sequence in [0,1] generated by a Psi-process to be equidistributed. The condition is met by the canonical example - the max-2 process - where the nth term is whichever of two uniformly placed points falls in the larger gap formed by the previous n - 1 points. This solves an open problem from Itai Benjamini, Pascal Maillard and Elliot Paquette. We also deduce equidistribution for more general Psi-processes. This includes an interpolation of the min-2 and max-2 processes that is biased towards min-2.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 16 条