EXISTENCE AND CONCENTRATION OF POSITIVE BOUND STATES FOR SCHRODINGER-POISSON SYSTEMS WITH POTENTIAL FUNCTIONS

被引:0
作者
Cunha, Patricia L. [1 ]
机构
[1] Fundacao Getulio Vargas, Dept Informat & Metodos Quantitat, Sao Paulo, Brazil
关键词
Schrodinger-Poisson system; variational methods; concentration; MULTIPLICITY; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the existence and concentration behavior of bound states for a nonlinear Schrodinger-Poisson system with a parameter epsilon > 0. Under suitable conditions on the potential functions, we prove that for epsilon small the system has a positive solution that concentrates at a point which is a global minimum of the minimax function associated to the related autonomous problem.
引用
收藏
页数:15
相关论文
共 27 条
[1]   Schrodinger-Poisson equations without Ambrosetti-Rabinowitz condition [J].
Alves, Claudianor O. ;
Soares Souto, Marco Aurelio ;
Soares, Sergio H. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) :584-592
[2]   Existence and concentration of positive solutions for a class of gradient systems [J].
Alves, CO ;
Soares, SHM .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2006, 12 (04) :437-457
[3]   Nonlinear perturbations of a periodic elliptic problem with critical growth [J].
Alves, CO ;
Carriao, PC ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (01) :133-146
[4]   On Schrodinger-Poisson Systems [J].
Ambrosetti, Antonio .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :257-274
[5]  
[Anonymous], 1996, MINIMAX THEOREMS
[6]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[7]  
Benci V., 1998, Top. Meth. Nonlinear Anal, V11, P283, DOI [https://doi.org/10.12775/TMNA.1998.019, DOI 10.12775/TMNA.1998.019]
[8]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[9]   Positive solutions for some non-autonomous Schrodinger-Poisson systems [J].
Cerami, Giovanna ;
Vaira, Giusi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) :521-543
[10]  
Coclite G.M., 2003, Commun. Appl. Anal, V7, P417