On the lack of dispersion for a class of magnetic Dirac flows

被引:5
作者
Arrizabalaga, Naiara [1 ]
Fanelli, Luca [2 ]
Garcia, Andoni [1 ]
机构
[1] Univ Basque Country, Dept Matemat, E-48080 Bilbao, Spain
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
Dirac equation; Strichartz estimates dispersive equations; magnetic potential; SCHRODINGER-OPERATORS; STRICHARTZ; WAVE; EQUATIONS; POTENTIALS; DECAY;
D O I
10.1007/s00028-012-0170-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that global Strichartz estimates for magnetic Dirac operators generally fail, if the potentials do not decay fast enough at infinity. In order to prove this, we construct some explicit examples of homogeneous magnetic potentials with less than Coulomb decay, that is, with homogeneity-degree more than -1, such that the magnetic field points to a fixed direction, which does not depend on x is an element of R-3.
引用
收藏
页码:89 / 106
页数:18
相关论文
共 25 条
[1]   Virial identity and weak dispersion for the magnetic Dirac equation [J].
Boussaid, Nabile ;
D'Ancona, Piero ;
Fanelli, Luca .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 95 (02) :137-150
[2]  
Burq N, 2004, INDIANA U MATH J, V53, P1665
[3]   Strichartz estimates for the wave and Schrodinger equations with the inverse-square potential [J].
Burq, N ;
Planchon, F ;
Stalker, JG ;
Tahvildar-Zadeh, AS .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 203 (02) :519-549
[4]   Maximal functions associated to filtrations [J].
Christ, M ;
Kiselev, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (02) :409-425
[5]   Strichartz and smoothing estimates for dispersive equations with magnetic potentials [J].
D'Ancona, Piero ;
Fanelli, Luca .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (06) :1082-1112
[6]   Decay estimates for the wave and Dirac equations with a magnetic potential [J].
D'Ancona, Piero ;
Fanelli, Luca .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (03) :357-392
[7]   Endpoint Strichartz estimates for the magnetic Schrodinger equation [J].
D'Ancona, Piero ;
Fanelli, Luca ;
Vega, Luis ;
Visciglia, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3227-3240
[9]   A singular critical potential for the Schrodinger operator [J].
Duyckaerts, Thomas .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2007, 50 (01) :35-47
[10]  
Erdogan MB, 2008, J EUR MATH SOC, V10, P507