Heat-Generating Iron Oxide Multigranule Nanoclusters for Enhancing Hyperthermic Efficacy in Tumor Treatment

被引:33
作者
Jeon, Sangmin [2 ]
Park, Bum Chul [1 ,4 ]
Lim, Seungho [2 ,5 ]
Yoon, Hong Yeol [2 ]
Jeon, Yoo Sang [1 ]
Kim, Byung-Soo [5 ]
Kim, Young Keun [1 ]
Kim, Kwangmeyung [2 ,3 ]
机构
[1] Korea Univ, Dept Mat Sci & Engn, Seoul 02481, South Korea
[2] Korea Inst Sci & Technol KIST, Biomed Res Inst, Ctr Theragnosis, Seoul 02792, South Korea
[3] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
[4] Korea Univ, BK21 Plus Ctr Creat Mat & Components, Seoul 02481, South Korea
[5] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
hyperthermia; high frequency; theranostic; iron oxide nanoparticle; multigranule nanocluster; polyethylene glycol; NANOPARTICLES; SIZE; DESIGN; IMPACT; MRI; ACCUMULATION; MECHANISMS; PRINCIPLES; EFFICIENCY; NANOCUBES;
D O I
10.1021/acsami.0c07419
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The development of heat-generating magnetic nanostructures is critical for the effective management of tumors using magnetic hyperthermia. Herein, we demonstrate that polyethylene glycol (PEG)-coated iron oxide (magnetite, Fe3O4) multigranule nanoclusters (PEG-MGNCs) can enhance the efficiency of hyperthermia-based tumor suppression in vitro and in vivo. MGNCs consisting of granules (crystallites) measuring 22.9 nm in diameter were prepared via the hydrothermal polyol method, followed by the surface modification of MGNCs with PEG-dopamine. The freshly prepared PEG-MGNCs exhibit 145.9 +/- 10.2 nm diameter on average under aqueous conditions. The three-dimensional structures of PEG-MGNCs enhance the hyperthermic efficacy compared with PEGylated single iron-oxide nanoparticles (NPs), resulting in severe heat damage to tumor cells in vitro. In the SCC7 tumor-bearing mice, near-infrared fluorescence dye (Cy5.5)-labeled PEG-MGNCs are successfully accumulated in the tumor tissues because of NP-derived enhanced permeation and retention effect. Finally, the tumor growth is significantly suppressed in PEG-MGNC-treated mice after two-times heat generation by using a longitudinal solenoid, which can generate an alternating magnetic field under high-frequency (19.5 kA/m, 389 kHz) induction. This study shows for the first time that the PEG-MGNCs greatly enhance the hyperthermic efficacy of tumor treatment both in vitro and in vivo.
引用
收藏
页码:33483 / 33491
页数:9
相关论文
共 36 条
[1]   Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine [J].
Akbarzadeh, Abolfazl ;
Samiei, Mohamad ;
Davaran, Soodabeh .
NANOSCALE RESEARCH LETTERS, 2012, 7 :1-13
[2]  
Cabral H, 2011, NAT NANOTECHNOL, V6, P815, DOI [10.1038/nnano.2011.166, 10.1038/NNANO.2011.166]
[3]   Solid-state phase transformation mechanism for formation of magnetic multi-granule nanoclusters [J].
Cha, Jinmyung ;
Lee, Ji Sung ;
Yoon, Seung Jae ;
Kim, Young Keun ;
Lee, Jin-Kyu .
RSC ADVANCES, 2013, 3 (11) :3631-3637
[4]   Using PEGylated magnetic nanoparticles to describe the EPR effect in tumor for predicting therapeutic efficacy of micelle drugs [J].
Chen, Ling ;
Zang, Fengchao ;
Wu, Haoan ;
Li, Jianzhong ;
Xie, Jun ;
Ma, Ming ;
Gu, Ning ;
Zhang, Yu .
NANOSCALE, 2018, 10 (04) :1788-1797
[5]   Injectable Smart Phase-Transformation Implants for Highly Efficient In Vivo Magnetic-Hyperthermia Regression of Tumors [J].
Chen, Yu ;
Jiang, Ling ;
Wang, Ronghui ;
Lu, Ming ;
Zhang, Qunxia ;
Zhou, Yang ;
Wang, Zhigang ;
Lu, Guangming ;
Liang, Ping ;
Ran, Haitao ;
Chen, Hangrong ;
Zheng, Yuanyi .
ADVANCED MATERIALS, 2014, 26 (44) :7468-7473
[6]  
Cho NH, 2011, NAT NANOTECHNOL, V6, P675, DOI [10.1038/NNANO.2011.149, 10.1038/nnano.2011.149]
[7]   Thermal ablation of tumours: biological mechanisms and advances in therapy [J].
Chu, Katrina F. ;
Dupuy, Damian E. .
NATURE REVIEWS CANCER, 2014, 14 (03) :199-208
[8]   Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update [J].
Ciocca, Daniel R. ;
Arrigo, Andre Patrick ;
Calderwood, Stuart K. .
ARCHIVES OF TOXICOLOGY, 2013, 87 (01) :19-48
[9]   Biological applications of magnetic nanoparticles [J].
Colombo, Miriam ;
Carregal-Romero, Susana ;
Casula, Maria F. ;
Gutierrez, Lucia ;
Morales, Maria P. ;
Boehm, Ingrid B. ;
Heverhagen, Johannes T. ;
Prosperi, Davide ;
Parak, Wolfgang. J. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (11) :4306-4334
[10]   Basic MR relaxation mechanisms and contrast agent design [J].
De Leon-Rodriguez, Luis M. ;
Martins, Andre F. ;
Pinho, Marco C. ;
Rofsky, Neil M. ;
Sherry, A. Dean .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2015, 42 (03) :545-565