A Regularity Criterion in Weak Spaces to Boussinesq Equations

被引:70
作者
Agarwal, Ravi P. [1 ]
Gala, Sadek [2 ,3 ]
Ragusa, Maria Alessandra [3 ,4 ]
机构
[1] Texas A&M Univ Kingsville, Dept Math, Kingsville, TX 78363 USA
[2] Univ Mostaganem, Ecole Normale Super Mostaganem, POB 270, Mostaganem 27000, Algeria
[3] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
[4] RUDN Univ, 6 Miklukho,Maklay St, Moscow 117198, Russia
关键词
Regularity results; Cauchy problem; Boussinesq equations; Lorentz spaces; Navier-Stokes equations; MHD equations; weak solutions; NAVIER-STOKES EQUATIONS; BLOW-UP CRITERION; ONE-COMPONENT REGULARITY; SMOOTH SOLUTIONS; LOCAL EXISTENCE; GRADIENT; TERMS;
D O I
10.3390/math8060920
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the regularity of weak solutions to the incompressible Boussinesq equations in R-3 x (0,T). The main goal is to establish the regularity criterion in terms of one velocity component and the gradient of temperature in Lorentz spaces.
引用
收藏
页数:11
相关论文
共 36 条
[1]  
Alazman AA, 2006, ADV DIFFERENTIAL EQU, V11, P121
[2]  
[Anonymous], 2002, Electron. J. Differ. Equ
[3]   On the regularity criteria for the 3D magnetohydrodynamic equations via two components in terms of BMO space [J].
Benbernou, Samia ;
Gala, Sadek ;
Ragusa, Maria Alessandra .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (15) :2320-2325
[4]  
Bergh J., 1976, GRUNDLEHREN MATH WIS
[5]   Global Regularity Criterion for the 3D Navier-Stokes Equations Involving One Entry of the Velocity Gradient Tensor [J].
Cao, Chongsheng ;
Titi, Edriss S. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (03) :919-932
[6]   Regularity Criteria for the Three-dimensional Navier-Stokes Equations [J].
Cao, Chongsheng ;
Titi, Edriss S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) :2643-2661
[7]   Local existence and blow-up criterion of Holder continuous solutions of the Boussinesq equations [J].
Chae, D ;
Kim, SK ;
Nam, HS .
NAGOYA MATHEMATICAL JOURNAL, 1999, 155 :55-80
[8]   Local existence and blow-up criterion for the Boussinesq equations [J].
Chae, D ;
Nam, HS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :935-946
[9]  
Chemin JY, 2016, ANN SCI ECOLE NORM S, V49, P131
[10]   A note on regularity criterion for the 3D Boussinesq system with partial viscosity [J].
Fan, Jishan ;
Zhou, Yong .
APPLIED MATHEMATICS LETTERS, 2009, 22 (05) :802-805