A spatio-temporal absorbing state model for disease and syndromic surveillance

被引:10
作者
Heaton, Matthew J. [1 ]
Banks, David L. [1 ]
Zou, Jian [2 ]
Karr, Alan F. [2 ]
Datta, Gauri [3 ]
Lynch, James [4 ]
Vera, Francisco [5 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] Natl Inst Stat Sci, Res Triangle Pk, NC 27709 USA
[3] Univ Georgia, Dept Stat, Athens, GA 30602 USA
[4] Univ S Carolina, Dept Stat, Columbia, SC 29208 USA
[5] Escuela Super Politecn Litoral, Inst Ciencias Matemat, Guayaquil, Ecuador
基金
美国国家科学基金会;
关键词
conditional autoregressive model; hierarchical model; hidden Markov model; influenza; SCAN STATISTICS; CUSUM PROCEDURE; MULTIVARIATE; SPACE; TIME; SYSTEMS; COUNTS;
D O I
10.1002/sim.5350
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reliable surveillance models are an important tool in public health because they aid in mitigating disease outbreaks, identify where and when disease outbreaks occur, and predict future occurrences. Although many statistical models have been devised for surveillance purposes, none are able to simultaneously achieve the important practical goals of good sensitivity and specificity, proper use of covariate information, inclusion of spatio-temporal dynamics, and transparent support to decision-makers. In an effort to achieve these goals, this paper proposes a spatio-temporal conditional autoregressive hidden Markov model with an absorbing state. The model performs well in both a large simulation study and in an application to influenza/pneumonia fatality data. Copyright (C) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:2123 / 2136
页数:14
相关论文
共 39 条
[1]  
Banerjee S., 2003, Hierarchical modeling and analysis for spatial data
[2]   Bayesian CAR models for syndromic surveillance on multiple data streams: Theory and practice [J].
Banks, David ;
Datta, Gauri ;
Karr, Alan ;
Lynch, James ;
Niemi, Jarad ;
Vera, Francisco .
INFORMATION FUSION, 2012, 13 (02) :105-116
[3]   BAYESIAN COMPUTATION AND STOCHASTIC-SYSTEMS [J].
BESAG, J ;
GREEN, P ;
HIGDON, D ;
MENGERSEN, K .
STATISTICAL SCIENCE, 1995, 10 (01) :3-41
[4]  
BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
[5]   Markov chain Monte Carlo convergence diagnostics: A comparative review [J].
Cowles, MK ;
Carlin, BP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (434) :883-904
[6]   Methods for monitoring influenza surveillance data [J].
Cowling, Benjamin J. ;
Wong, Irene O. L. ;
Ho, Lai-Ming ;
Riley, Steven ;
Leung, Gabriel M. .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2006, 35 (05) :1314-1321
[7]   Comparing syndromic surveillance detection methods:: EARS' versus a CUSUM-based methodology [J].
Fricker, Ronald D., Jr. ;
Hegler, Benjamin L. ;
Dunfee, David A. .
STATISTICS IN MEDICINE, 2008, 27 (17) :3407-3429
[8]  
Gamerman Dani, 2006, Texts in Statistical Science
[9]   An adaptive Metropolis algorithm [J].
Haario, H ;
Saksman, E ;
Tamminen, J .
BERNOULLI, 2001, 7 (02) :223-242
[10]   A statistical framework for the analysis of multivariate infectious disease surveillance counts [J].
Held, L ;
Höhle, M ;
Hofmann, M .
STATISTICAL MODELLING, 2005, 5 (03) :187-199