On Robust Estimation for Slope in Linear Functional Relationship Model

被引:2
|
作者
Arif, Azuraini Mohd [1 ]
Zubairi, Yong Zulina [2 ]
Hussin, Abdul Ghapor [3 ]
机构
[1] Univ Malaya, Inst Grad Studies, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Ctr Fdn Studies Sci, Kuala Lumpur 50603, Malaysia
[3] Natl Def Univ Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
来源
SAINS MALAYSIANA | 2019年 / 48卷 / 01期
关键词
Linear functional relationship model; mean square error; modified nzaximum likelihood estimation; outliers; robust; OUTLIERS;
D O I
10.17576/jsm-2019-4801-27
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose a robust parameter estimation method for the linear functional relationship model. We improved the maximum likelihood estimation using robust estimators and robust correlation coefficients to estimate the slope parameter. The performance of the propose method, MMLE, is compared with the standard maximum likelihood estimation (MLE) and the nonparametric method in terms of mean square error. The results for simulation studies suggested the performance of the MMLE and nonparametric methods gives better estimate than the standard MLE in the presence of outliers. The novelty of the proposed method is that it is not affected by the presence of outliers and is simple to use. To illustrate practical application of the methods, we obtain the estimate of the slope parameter in a study of body-composition techniques for children.
引用
收藏
页码:237 / 242
页数:6
相关论文
共 50 条
  • [41] A clustering approach to detect multiple outliers in linear functional relationship model for circular data
    Mokhtar, Nurkhairany Amyra
    Zubairi, Yong Zulina
    Hussin, Abdul Ghapor
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (06) : 1041 - 1051
  • [42] Phase-I robust parameter estimation of simple linear profiles in multistage processes
    Khedmati, Majid
    Niaki, Seyed Taghi Akhavan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (02) : 460 - 485
  • [43] ESTIMATION IN A PARTIAL REGRESSION MODEL FOR CONTAMINATED DATA USING THE ROBUST PARTIAL RESIDUAL ESTIMATION TECHNIQUE
    Al-Azzawi, Ekhlass A.
    Al-Alway, Lekaa A.
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2022, 18 : 1473 - 1482
  • [44] ROBUST MAXIMUM LIKELIHOOD ESTIMATION OF SPARSE VECTOR ERROR CORRECTION MODEL
    Zhao, Ziping
    Palomar, Daniel P.
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 913 - 917
  • [45] Robust estimation and variable selection for semiparametric partially linear varying coefficient model based on modal regression
    Zhang, Riquan
    Zhao, Weihua
    Liu, Jicai
    JOURNAL OF NONPARAMETRIC STATISTICS, 2013, 25 (02) : 523 - 544
  • [46] Robust estimation of the vector autoregressive model by a least trimmed squares procedure
    Croux, Christophe
    Joossens, Kristel
    COMPSTAT 2008: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2008, : 489 - 501
  • [47] A journey in single steps:: robust one-step M-estimation in linear regression
    Welsh, AH
    Ronchetti, E
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 103 (1-2) : 287 - 310
  • [48] Robust estimation of error scale in nonparametric regression models
    Ghement, Isabella Rodica
    Ruiz, Marcelo
    Zamar, Ruben
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (10) : 3200 - 3216
  • [49] A QUADRATURE MEDIAN MATCHED FILTER FOR ROBUST DETECTION AND ESTIMATION
    Picciolo, Michael L.
    Myrick, Wilbur L.
    Goldstein, J. Scott
    2019 INTERNATIONAL RADAR CONFERENCE (RADAR2019), 2019, : 535 - 540
  • [50] A Modified Robust Estimator under Heteroscedasticity and Unusual Observations for Linear Regression Model
    Mubarik, Shagufta
    Ilyas, Maryam
    ROMANIAN STATISTICAL REVIEW, 2021, (03) : 23 - 36