On Robust Estimation for Slope in Linear Functional Relationship Model

被引:2
|
作者
Arif, Azuraini Mohd [1 ]
Zubairi, Yong Zulina [2 ]
Hussin, Abdul Ghapor [3 ]
机构
[1] Univ Malaya, Inst Grad Studies, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Ctr Fdn Studies Sci, Kuala Lumpur 50603, Malaysia
[3] Natl Def Univ Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
来源
SAINS MALAYSIANA | 2019年 / 48卷 / 01期
关键词
Linear functional relationship model; mean square error; modified nzaximum likelihood estimation; outliers; robust; OUTLIERS;
D O I
10.17576/jsm-2019-4801-27
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose a robust parameter estimation method for the linear functional relationship model. We improved the maximum likelihood estimation using robust estimators and robust correlation coefficients to estimate the slope parameter. The performance of the propose method, MMLE, is compared with the standard maximum likelihood estimation (MLE) and the nonparametric method in terms of mean square error. The results for simulation studies suggested the performance of the MMLE and nonparametric methods gives better estimate than the standard MLE in the presence of outliers. The novelty of the proposed method is that it is not affected by the presence of outliers and is simple to use. To illustrate practical application of the methods, we obtain the estimate of the slope parameter in a study of body-composition techniques for children.
引用
收藏
页码:237 / 242
页数:6
相关论文
共 50 条
  • [31] Robust estimation via robust gradient estimation
    Prasad, Adarsh
    Suggala, Arun Sai
    Balakrishnan, Sivaraman
    Ravikumar, Pradeep
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2020, 82 (03) : 601 - 627
  • [32] The t linear mixed model: model formulation, identifiability and estimation
    Regis, Marta
    Brini, Alberto
    Nooraee, Nazanin
    Haakma, Reinder
    van den Heuvel, Edwin R.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (05) : 2318 - 2342
  • [33] Bounded Influence Propagation τ-Estimation: A New Robust Method for ARMA Model Estimation
    Muma, Michael
    Zoubir, Abdelhak M.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (07) : 1712 - 1727
  • [34] Robust group-Lasso for functional regression model
    Pannu, Jasdeep
    Billor, Nedret
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (05) : 3356 - 3374
  • [35] Robust Estimation of Parameters in Simple Linear Profiles Using M-Estimators
    Ebadi, Mohsen
    Shahriari, Hamid
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (20) : 4308 - 4323
  • [36] On the Robust Parameter Estimation Method for Linear Model with Autocorrelated Errors in the Presence of High Leverage Points and Outliers in the Y-Direction
    Ali, D. A.
    Midi, H.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (03): : 505 - 517
  • [37] A comparative study of some robust methods for coefficient-estimation in linear regression
    Meintanis, SG
    Donatos, GS
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 23 (04) : 525 - 540
  • [38] Fast and robust parameter estimation in the polynomial regression model of images
    Palenichka, RM
    Ivasenko, IB
    NONLINEAR IMAGE PROCESSING X, 1999, 3646 : 28 - 37
  • [39] Robust estimation in the logistic regression model
    Kordzakhia, N
    Mishra, GD
    Reiersolmoen, L
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 98 (1-2) : 211 - 223
  • [40] Robust estimators under a functional common principal components model
    Lucas Bali, Juan
    Boente, Graciela
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 113 : 424 - 440