Online affine model identification of nonlinear processes using a new adaptive neuro-fuzzy approach

被引:12
|
作者
Salahshoor, Karim [1 ]
Hamzehnejad, Morteza [1 ]
Zakeri, Sepide [1 ]
机构
[1] Petr Univ Technol, Dept Automat & Instrumentat, Tehran, Iran
关键词
Online identification; Affine model; Adaptive neuro-fuzzy model; EKF; ANFIS; SYSTEM IDENTIFICATION; NETWORKS; ANFIS;
D O I
10.1016/j.apm.2012.01.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a new online identification algorithm to drive an adaptive affine dynamic model for nonlinear and time-varying processes. The new algorithm is devised on the basis of an adaptive neuro-fuzzy modeling approach. Two adaptive neuro-fuzzy models are sequentially identified on the basis of the most recent input-output process data to realize an online affine-type model. A series of simulation test studies has been conducted to demonstrate the efficient capabilities of the proposed algorithm to automatically identify an online affine-type model for two highly nonlinear and time-varying continuous stirred tank reactor (CSTR) benchmark problems having inherent non-affine dynamic model representations. Adequacy assessments of the identified models have been explored using different evaluation measures, including comparison with an adaptive neuro-fuzzy inference system (ANFIS) as the pioneering and the most popular adaptive neuro-fuzzy system with powerful modeling features. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:5534 / 5554
页数:21
相关论文
共 50 条
  • [31] Direct adaptive neuro-fuzzy trajectory tracking of uncertain nonlinear systems
    Theodoridis, D. C.
    Boutalis, Y. S.
    Christodoulou, M. A.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2012, 26 (07) : 660 - 688
  • [32] Wind power conversion system model identification using adaptive neuro-fuzzy inference systems: A case study
    Bilal, Boudy
    Adjallah, Kondo Hloindo
    Sava, Alexandre
    Yetilmezsoy, Kaan
    Kiyan, Emel
    ENERGY, 2022, 239
  • [33] NONLINEAR SYSTEM MODELING WITH DYNAMIC ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
    Yilmaz, Sevcan
    Oysal, Yusuf
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA 2014), 2014, : 205 - 211
  • [34] A Neuro-Fuzzy Approach to generating Customer Satisfaction Model for New Product Development
    Kwong, C. K.
    Wong, T. C.
    IEEM: 2008 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-3, 2008, : 1804 - 1808
  • [35] A new data normalization approach applied to the electromechanical impedance method using adaptive neuro-fuzzy inference system
    Freitas, Fernando Augusto
    Jafelice, Rosana Motta
    da Silva, Jose Waldemar
    Rabelo, Diogo de Souza
    Schroden Nomelini, Quintiliano Siqueira
    Vieira de Moura, Jose dos Reis
    Gallo, Carlos Alberto
    da Cunha, Marcio Jose
    Ramos, Julio Endress
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2021, 43 (11)
  • [36] A new data normalization approach applied to the electromechanical impedance method using adaptive neuro-fuzzy inference system
    Fernando Augusto Freitas
    Rosana Motta Jafelice
    José Waldemar da Silva
    Diogo de Souza Rabelo
    Quintiliano Siqueira Schroden Nomelini
    José dos Reis Vieira de Moura
    Carlos Alberto Gallo
    Marcio José da Cunha
    Julio Endress Ramos
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43
  • [37] Optimised class point approach for software effort estimation using adaptive neuro-fuzzy inference system model
    Satapathy, Shashank Mouli
    Kumar, Mukesh
    Rath, Santanu Kumar
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2016, 54 (04) : 323 - 333
  • [38] A decision support system for coagulation and flocculation processes using the adaptive neuro-fuzzy inference system
    Pouresmaeil, H.
    Faramarz, M. G.
    ZamaniKherad, M.
    Gheibi, M.
    Fathollahi-Fard, A. M.
    Behzadian, K.
    Tian, G.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2022, 19 (10) : 10363 - 10374
  • [39] Adaptive Neuro-Fuzzy Inference System Identification Model for Smart Control Valves with Static Friction
    Daneshwar, M. A.
    Noh, Norlaili Mohd
    2013 IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE 2013), 2013, : 122 - 126
  • [40] MODAL ANALYSIS OF SYSTEMS USING A NEURO-FUZZY APPROACH
    Khoshnoud, Farbod
    de Silva, Clarence W.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2010, VOL 8, PTS A AND B, 2012, : 1085 - 1097