Collapse of thermosensitive polyelectrolyte semi-interpenetrating networks

被引:23
|
作者
Kozhunova, Elena Yu. [1 ]
Makhaeva, Elena E. [1 ]
Khokhlov, Alexey R. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Dept Phys Polymers & Crystals, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
Thermosensitive; Hydrogel; Polyelectrolyte; AQUEOUS POLY(N-ISOPROPYLACRYLAMIDE) SOLUTIONS; INTERPENETRATING POLYMER NETWORKS; PHASE-TRANSITION TEMPERATURE; POLY(ACRYLIC ACID) CHAINS; POLY(N-VINYLCAPROLACTAM-CO-METHACRYLIC ACID); COOPERATIVE HYDRATION; N-ISOPROPYLACRYLAMIDE; MICROGEL PARTICLES; LCST BEHAVIOR; HYDROGELS;
D O I
10.1016/j.polymer.2012.04.001
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Thermosensitive ionic semi-interpenetrating polymer networks (semi-IPNs) based on poly(N-isopropylacrylamide) (PNIPAAm) and poly(styrene sulfonic acid sodium salt) (PSS) were synthesized, and their properties, such as conversion, swelling ratio and swelling/shrinking kinetics, were studied at different PSS fractions and molecular weight (MW). It is shown that studied semi-IPN hydrogels undergo shrinking under temperature increase. Swelling behavior and volume transition temperature of the semi-IPNs is controlled by the polyelectrolyte fraction. The increase of PSS MW allows obtaining of stable semi-IPN hydrogels. A novel phenomenon of collapse irreversibility in PNIPAAm-PSS semi-IPNs is reported. In contrast to PNIPAAm hydrogels, semi-IPNs of PNIPAAm with immobilized polyelectrolyte do not restore their volume when they reswell after shrinking. The magnitude of this effect is connected to the charged polyelectrolyte fraction. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2379 / 2384
页数:6
相关论文
共 50 条
  • [41] Thermal characterizations of chitosan and polyacrylonitrile semi-interpenetrating polymer networks
    Kim, SJ
    Shin, SR
    Kim, SI
    HIGH PERFORMANCE POLYMERS, 2002, 14 (03) : 309 - 316
  • [42] Swelling and Physical Properties of Semi-Interpenetrating NR/PVA Networks
    Riyajan, S. -A.
    Chaiphonban, S.
    KGK-KAUTSCHUK GUMMI KUNSTSTOFFE, 2010, 63 (03): : 70 - 73
  • [43] Miscibility and properties of polyurethane/benzyl starch semi-interpenetrating polymer networks
    Cao, XD
    Zhang, LN
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2005, 43 (05) : 603 - 615
  • [44] Synthesis and characterization of sodium alginate/acrylamide semi-interpenetrating polymer networks
    Şolpan, Dilek
    Torun, Murat
    Journal of Applied Polymer Science, 2006, 100 (01): : 335 - 342
  • [45] Polyetherimide/dicyanate semi-interpenetrating polymer networks having a morphology spectrum
    Kim, YS
    Min, HS
    Kim, SC
    MACROMOLECULAR RESEARCH, 2002, 10 (02) : 60 - 66
  • [46] Preparation of semi-interpenetrating polymer networks with adjustable mesh width and hydrophobicity
    Fang, Chunliu
    Julius, David
    Tay, Siok Wei
    Hong, Liang
    Lee, Jim Yang
    POLYMER, 2013, 54 (01) : 134 - 142
  • [47] Polyurethane-epoxy maleate of bisphenol A semi-interpenetrating polymer networks
    Cascaval, CN
    Ciobanu, C
    Rosu, D
    Rosu, L
    JOURNAL OF APPLIED POLYMER SCIENCE, 2002, 83 (01) : 138 - 144
  • [48] DE-CROSSLINKING AND ANNEALING STUDIES ON SEMI-INTERPENETRATING POLYMER NETWORKS
    NEUBAUER, EA
    DEVIAMANJARRES, N
    THOMAS, DA
    SPERLING, LH
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1977, 173 (MAR20): : 47 - 47
  • [49] Synthesis and characterization of modified bismaleimide/polysulfone semi-interpenetrating polymer networks
    Kurdi, Jamal
    Kumar, Ashwani
    JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 102 (01) : 369 - 379
  • [50] Penetrant transport in polyethylene-polystyrene semi-interpenetrating polymer networks
    Hong, SU
    Duda, JL
    JOURNAL OF APPLIED POLYMER SCIENCE, 1997, 65 (01) : 51 - 57