Photolithography allows high-Q AlN microresonators for near octave-spanning frequency comb and harmonic generation

被引:24
作者
Liu, Jia [1 ,2 ]
Weng, Haizhong [3 ,4 ]
Afridi, Adnan Ali [3 ,4 ]
Li, Jing [3 ,4 ]
Dai, Jiangnan [1 ,2 ]
Ma, Xiang [1 ,2 ]
Long, Hanling [1 ,2 ]
Zhang, Yi [1 ,2 ]
Lu, Qiaoyin [1 ,2 ]
Donegan, John F. [3 ,4 ]
Guo, Weihua [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, 1037 Luoyu Rd, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, 1037 Luoyu Rd, Wuhan 430074, Peoples R China
[3] Trinity Coll Dublin, Sch Phys, CRANN, Dublin 2, Ireland
[4] Trinity Coll Dublin, AMBER, Dublin 2, Ireland
基金
爱尔兰科学基金会; 中国国家自然科学基金;
关键词
SILICON-NITRIDE MICRORESONATORS; KERR;
D O I
10.1364/OE.395013
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Single-crystal aluminum nitride (AlN) possessing both strong Pockels and Kerr nonlinear optical effects as well as a very large band gap is a fascinating optical platform for integrated nonlinear optics. In this work, fully etched AlN-on-sapphire microresonators with a high-Q of 2.1 x 10(6) for the TE00 mode are firstly demonstrated with the standard photolithography technique. A near octave-spanning Kerr frequency comb ranging from 1100 to 2150 nm is generated at an on-chip power of 406 mW for the TM00 mode. Due to the high confinement, the TE10 mode also excites a Kerr comb from 1270 to 1850nm at 316 mW. In addition, frequency conversion to visible light is observed during the frequency comb generation. Our work will lead to a large-scale, low-cost, integrated nonlinear platform based on AlN. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:19270 / 19280
页数:11
相关论文
共 46 条
[11]  
Herr T, 2012, NAT PHOTONICS, V6, P480, DOI [10.1038/NPHOTON.2012.127, 10.1038/nphoton.2012.127]
[12]   Counting the cycles of light using a self-referenced optical microresonator [J].
Jost, J. D. ;
Herr, T. ;
Lecaplain, C. ;
Brasch, V. ;
Pfeiffer, M. H. P. ;
Kippenberg, T. J. .
OPTICA, 2015, 2 (08) :706-711
[13]   All-optical stabilization of a soliton frequency comb in a crystalline microresonator [J].
Jost, J. D. ;
Lucas, E. ;
Herr, T. ;
Lecaplain, C. ;
Brasch, V. ;
Pfeiffer, M. H. P. ;
Kippenberg, T. J. .
OPTICS LETTERS, 2015, 40 (20) :4723-4726
[14]   Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion [J].
Jung, Hojoong ;
Tang, Hong X. .
NANOPHOTONICS, 2016, 5 (02) :263-271
[15]   Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator [J].
Jung, Hojoong ;
Stoll, Rebecca ;
Guo, Xiang ;
Fischer, Debra ;
Tang, Hong X. .
OPTICA, 2014, 1 (06) :396-399
[16]   Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators [J].
Jung, Hojoong ;
Fong, King Y. ;
Xiong, Chi ;
Tang, Hong X. .
OPTICS LETTERS, 2014, 39 (01) :84-87
[17]   Microresonator-Based Optical Frequency Combs [J].
Kippenberg, T. J. ;
Holzwarth, R. ;
Diddams, S. A. .
SCIENCE, 2011, 332 (6029) :555-559
[18]   Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity -: art. no. 083904 [J].
Kippenberg, TJ ;
Spillane, SM ;
Vahala, KJ .
PHYSICAL REVIEW LETTERS, 2004, 93 (08) :083904-1
[19]   All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx [J].
Koos, C. ;
Vorreau, P. ;
Vallaitis, T. ;
Dumon, P. ;
Bogaerts, W. ;
Baets, R. ;
Esembeson, B. ;
Biaggio, I. ;
Michinobu, T. ;
Diederich, F. ;
Freude, W. ;
Leuthold, J. .
NATURE PHOTONICS, 2009, 3 (04) :216-219
[20]   CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects [J].
Levy, Jacob S. ;
Gondarenko, Alexander ;
Foster, Mark A. ;
Turner-Foster, Amy C. ;
Gaeta, Alexander L. ;
Lipson, Michal .
NATURE PHOTONICS, 2010, 4 (01) :37-40