Photolithography allows high-Q AlN microresonators for near octave-spanning frequency comb and harmonic generation

被引:24
作者
Liu, Jia [1 ,2 ]
Weng, Haizhong [3 ,4 ]
Afridi, Adnan Ali [3 ,4 ]
Li, Jing [3 ,4 ]
Dai, Jiangnan [1 ,2 ]
Ma, Xiang [1 ,2 ]
Long, Hanling [1 ,2 ]
Zhang, Yi [1 ,2 ]
Lu, Qiaoyin [1 ,2 ]
Donegan, John F. [3 ,4 ]
Guo, Weihua [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, 1037 Luoyu Rd, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, 1037 Luoyu Rd, Wuhan 430074, Peoples R China
[3] Trinity Coll Dublin, Sch Phys, CRANN, Dublin 2, Ireland
[4] Trinity Coll Dublin, AMBER, Dublin 2, Ireland
基金
爱尔兰科学基金会; 中国国家自然科学基金;
关键词
SILICON-NITRIDE MICRORESONATORS; KERR;
D O I
10.1364/OE.395013
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Single-crystal aluminum nitride (AlN) possessing both strong Pockels and Kerr nonlinear optical effects as well as a very large band gap is a fascinating optical platform for integrated nonlinear optics. In this work, fully etched AlN-on-sapphire microresonators with a high-Q of 2.1 x 10(6) for the TE00 mode are firstly demonstrated with the standard photolithography technique. A near octave-spanning Kerr frequency comb ranging from 1100 to 2150 nm is generated at an on-chip power of 406 mW for the TM00 mode. Due to the high confinement, the TE10 mode also excites a Kerr comb from 1270 to 1850nm at 316 mW. In addition, frequency conversion to visible light is observed during the frequency comb generation. Our work will lead to a large-scale, low-cost, integrated nonlinear platform based on AlN. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:19270 / 19280
页数:11
相关论文
共 46 条
[1]   Label-free, single-molecule detection with optical microcavities [J].
Armani, Andrea M. ;
Kulkarni, Rajan P. ;
Fraser, Scott E. ;
Flagan, Richard C. ;
Vahala, Kerry J. .
SCIENCE, 2007, 317 (5839) :783-787
[2]   17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators [J].
Bruch, Alexander W. ;
Liu, Xianwen ;
Guo, Xiang ;
Surya, Joshua B. ;
Gong, Zheng ;
Zhang, Liang ;
Wang, Junxi ;
Yan, Jianchang ;
Tang, Hong X. .
APPLIED PHYSICS LETTERS, 2018, 113 (13)
[3]   Herbal Therapy for the Treatment of Acetaminophen-Associated Liver Injury: Recent Advances and Future Perspectives [J].
Chang, Ling ;
Xu, Dongwei ;
Zhu, Jianjun ;
Ge, Guangbo ;
Kong, Xiaoni ;
Zhou, Ying .
FRONTIERS IN PHARMACOLOGY, 2020, 11
[4]   Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model [J].
Coen, Stephane ;
Randle, Hamish G. ;
Sylvestre, Thibaut ;
Erkintalo, Miro .
OPTICS LETTERS, 2013, 38 (01) :37-39
[5]   Optical frequency comb generation from a monolithic microresonator [J].
Del'Haye, P. ;
Schliesser, A. ;
Arcizet, O. ;
Wilken, T. ;
Holzwarth, R. ;
Kippenberg, T. J. .
NATURE, 2007, 450 (7173) :1214-1217
[6]   Octave Spanning Tunable Frequency Comb from a Microresonator [J].
Del'Haye, P. ;
Herr, T. ;
Gavartin, E. ;
Gorodetsky, M. L. ;
Holzwarth, R. ;
Kippenberg, T. J. .
PHYSICAL REVIEW LETTERS, 2011, 107 (06)
[7]   High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators [J].
Gong, Zheng ;
Bruch, Alexander ;
Shen, Mohan ;
Guo, Xiang ;
Jung, Hojoong ;
Fan, Linran ;
Liu, Xianwen ;
Zhang, Liang ;
Wang, Junxi ;
Li, Jinmin ;
Yan, Jianchang ;
Tang, Hong X. .
OPTICS LETTERS, 2018, 43 (18) :4366-4369
[8]   Silicon-chip mid-infrared frequency comb generation [J].
Griffith, Austin G. ;
Lau, Ryan K. W. ;
Cardenas, Jaime ;
Okawachi, Yoshitomo ;
Mohanty, Aseema ;
Fain, Romy ;
Lee, Yoon Ho Daniel ;
Yu, Mengjie ;
Phare, Christopher T. ;
Poitras, Carl B. ;
Gaeta, Alexander L. ;
Lipson, Michal .
NATURE COMMUNICATIONS, 2015, 6
[9]   Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency [J].
Guo, Xiang ;
Zou, Chang-Ling ;
Tang, Hong X. .
OPTICA, 2016, 3 (10) :1126-1131
[10]   Diamond nonlinear photonics [J].
Hausmann, B. J. M. ;
Bulu, I. ;
Venkataraman, V. ;
Deotare, P. ;
Loncar, M. .
NATURE PHOTONICS, 2014, 8 (05) :369-374