共 17 条
[1]
Beitzel Steven M., 2009, Average R-Precision, P195, DOI DOI 10.1007/978-0-387-39940-9_491
[2]
Brooke J., 1996, Usability evaluation in industry, V189, P4
[3]
The Benefits of Close-Domain Fine-Tuning for Table Detection in Document Images
[J].
DOCUMENT ANALYSIS SYSTEMS,
2020, 12116
:199-215
[4]
Cesarini F, 2002, INT C PATT RECOG, P236, DOI 10.1109/ICPR.2002.1047838
[5]
Domain Adaptive Faster R-CNN for Object Detection in the Wild
[J].
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR),
2018,
:3339-3348
[6]
Ganin Y, 2015, PR MACH LEARN RES, V37, P1180
[7]
Fine-grained Recognition in the Wild: A Multi-Task Domain Adaptation Approach
[J].
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV),
2017,
:1358-1367
[8]
Learning to Detect Tables in Scanned Document Images using Line Information
[J].
2013 12TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR),
2013,
:1185-1189
[9]
Kavasidis I., 2019, SALIENCY BASED CONVO, P292
[10]
Li M., 2019, TableBank: table benchmark for image- based table detection and recognition