UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles

被引:246
作者
Lu, Geyu [1 ]
Xu, Jing [1 ]
Sun, Jianbo [1 ]
Yu, Yingshuo [1 ]
Zhang, Yiqun [1 ]
Liu, Fengmin [1 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China
关键词
NO2 gas sensor; Room temperature; Semiconductor; UV light illumination; GAS-SENSING PROPERTIES; TIN-OXIDE; LIGHT; HUMIDITY; SURFACE; FILMS; DC;
D O I
10.1016/j.snb.2011.12.039
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
ZnO/SnO2 composite materials are synthesized by hydrolyzing SnCl2 on ZnO nanorods via the wet chemical method. The gas sensing studies revealed that ZnO/SnO2 exhibits a high response to NO2 at room temperature under UV light emitting diode illumination. The highest response to NO2 was achieved by the ZnO/SnO2 composite with Zn and Sn molar ratio of 1:1 (ZS3). The resistance of sensor based on ZS3 with UV light stimulation changed 1266-fold to 500 ppb NO2 gas at room temperature. Furthermore, the selectivity, as well as response and recovery properties, of the sensor was improved remarkably by UV light irradiation. The ZnO/SnO2 heterojunction model and the increased photo-generated electrons are proposed to elucidate the gas sensing mechanism. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 88
页数:7
相关论文
共 36 条
[1]   Light enhanced NO2 gas sensing with tin oxide at room temperature:: conductance and work function measurements [J].
Anothainart, K ;
Burgmair, A ;
Karthigeyan, A ;
Zimmer, M ;
Eisele, I .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 93 (1-3) :580-584
[2]   Conduction model of metal oxide gas sensors [J].
Barsan, N ;
Weimar, U .
JOURNAL OF ELECTROCERAMICS, 2001, 7 (03) :143-167
[3]  
Bickley R.I., 1997, PHOTOADSORPTION PHOT
[4]   PREPARATION OF CATALYSTS BY METALLIC COMPLEX ADSORPTION ON MINERAL OXIDES [J].
BRUNELLE, JP .
PURE AND APPLIED CHEMISTRY, 1978, 50 (9-10) :1211-1229
[5]   CHEMICAL PIEZOELECTRIC SENSOR AND SENSOR ARRAY CHARACTERIZATION [J].
CAREY, WP ;
KOWALSKI, BR .
ANALYTICAL CHEMISTRY, 1986, 58 (14) :3077-3084
[6]   Synthesis of ZnO-SnO2 nanocomposites by microemulsion and sensing properties for NO2 [J].
Chen Liangyuan ;
Bai Shouli ;
Zhou Guojun ;
Li Dianqing ;
Chen Aifan ;
Chung Chiun Liu .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 134 (02) :360-366
[7]   Synthesis of SnO2-ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties [J].
Choi, Sun-Woo ;
Park, Jae Young ;
Kim, Sang Sub .
NANOTECHNOLOGY, 2009, 20 (46)
[8]   UV light activation of tin oxide thin films for NO2 sensing at low temperatures [J].
Comini, E ;
Faglia, G ;
Sberveglieri, G .
SENSORS AND ACTUATORS B-CHEMICAL, 2001, 78 (1-3) :73-77
[9]   Light enhanced gas sensing properties of indium oxide and tin dioxide sensors [J].
Comini, E ;
Cristalli, A ;
Faglia, G ;
Sberveglieri, G .
SENSORS AND ACTUATORS B-CHEMICAL, 2000, 65 (1-3) :260-263
[10]   UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO [J].
Fan, Shan-Wei ;
Srivastava, Arvind K. ;
Dravid, Vinayak P. .
APPLIED PHYSICS LETTERS, 2009, 95 (14)