SIMULATING SOIL WATER STATUS OF IRRIGATED FIELDS: THE EFFECTS OF SOIL DATA AND ROOT WATER UPTAKE DISTRIBUTION

被引:1
|
作者
Mehata, Mukesh [1 ]
Datta, Sumon [1 ]
Taghvaeian, Saleh [1 ]
Mirchi, Ali [1 ]
Moriasi, Daniel N. [2 ]
Starks, Patrick J. [2 ]
机构
[1] Oklahoma State Univ, Dept Biosyst & Agr Engn, Stillwater, OK 74078 USA
[2] USDA ARS, Grazinglands Res Lab, El Reno, OK USA
来源
JOURNAL OF THE ASABE | 2022年 / 65卷 / 03期
关键词
HYDRUS; Irrigation scheduling; Irrigation trigger; Soil water depletion; Volumetric water content; MOISTURE; PATTERNS; MODEL;
D O I
10.13031/ja.14856
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
With recent advances in web-based irrigation scheduling tools and mobile applications and the possibility of using more complex modeling approaches, it is important to evaluate the effects of variable input data on the output of these tools and models. Two types of input data that are highly variable across irrigated fields and soil profiles are soil textural data and root water uptake distribution (RWUD). In this study, root zone soil textural data from two sources of commonly used, freely available web soil survey (WSS) and time-consuming, labor-intensive in-situ sampling (ISS) were used in combination with three RWUDs (constant, linear, and sensor-based) to simulate volumetric water content (theta(v)) at four soil layers in six irrigated fields, using the HYDRUS model. The percentage of sand particles based on WSS was about half of the measured amount on average, resulting in a considerable difference in estimated hydraulic properties and soil water thresholds. Sensor data revealed that RWUDs were highly nonuniform, with more than 60% of water extraction occurring from the top 30 cm of the root zone. Among the six combinations of two sources of soil data and three RWUDs, ISS-sensor resulted in the smallest errors in simulated theta(v), and WSS-constant yielded the largest errors. Simulated theta(v) data were translated to actionable end-user variables of irrigation trigger (IT) and soil water depletion (SWD), which determine the timing and the amount of irrigation applications, respectively. Relying on WSS resulted in irrigation trigger being called about four times more than when measured soil data were used. The average SWD based on WSS was 157 mm, about two times larger than the average SWD based on ISS (68 mm).
引用
收藏
页码:587 / 597
页数:11
相关论文
共 50 条
  • [1] Soil Moisture Deficit as a predictor of the trend in soil water status of grass fields
    Kerebel, A.
    Cassidy, R.
    Jordan, P.
    Holden, N. M.
    SOIL USE AND MANAGEMENT, 2013, 29 (03) : 419 - 431
  • [2] Combining root and soil hydraulics in macroscopic representations of root water uptake
    Vanderborght, Jan
    Leitner, Daniel
    Schnepf, Andrea
    Couvreur, Valentin
    Vereecken, Harry
    Javaux, Mathieu
    VADOSE ZONE JOURNAL, 2024, 23 (03)
  • [3] Effects of the micro-scale advection on the soil water movement in micro-irrigated fields
    Yuge, Kozue
    Anan, Mitsumasa
    Shinogi, Yoshiyuki
    IRRIGATION SCIENCE, 2014, 32 (02) : 159 - 167
  • [4] Compensated non-linear root water uptake model and identification of soil hydraulic and root water uptake parameters*
    Sonkar, Ickkshaanshu
    Sudesan, Soorya
    Suryanarayana Rao Kotnoor, Hari Prasad
    IRRIGATION AND DRAINAGE, 2022, 71 (01) : 157 - 174
  • [5] Estimates of tree root water uptake from soil moisture profile dynamics
    Jackisch, Conrad
    Knoblauch, Samuel
    Blume, Theresa
    Zehe, Erwin
    Hassler, Sibylle K.
    BIOGEOSCIENCES, 2020, 17 (22) : 5787 - 5808
  • [6] Modeling Soil-Water-Disease Interactions of Flood-Irrigated Mandarin Orange Trees: Role of Root Distribution Parameters
    Peddinti, Srinivasa Rao
    Kambhammettu, B. V. N. P.
    Ranjan, Shashi
    Suradhaniwar, Saurabh
    Badnakhe, Mrunalini R.
    Adinarayana, J.
    Gade, R. M.
    VADOSE ZONE JOURNAL, 2018, 17 (01)
  • [7] Spatially Resolved Root Water Uptake Determination Using a Precise Soil Water Sensor
    van Dusschoten, Dagmar
    Kochs, Johannes
    Kuppe, Christian W.
    Sydoruk, Viktor A.
    Couvreur, Valentin
    Pflugfelder, Daniel
    Postma, Johannes A.
    PLANT PHYSIOLOGY, 2020, 184 (03) : 1221 - 1235
  • [8] Measurements and simulation of leaf xylem water potential and root water uptake in heterogeneous soil water contents
    Hayat, Faisal
    Ahmed, Mutez Ali
    Zarebanadkouki, Mohsen
    Cai, Gaochao
    Carminati, Andrea
    ADVANCES IN WATER RESOURCES, 2019, 124 : 96 - 105
  • [9] Simulation of the Water Dynamics and Root Water Uptake of Winter Wheat in Irrigation at Different Soil Depths
    Guo, Xianghong
    Sun, Xihuan
    Ma, Juanjuan
    Lei, Tao
    Zheng, Lijian
    Wang, Pu
    WATER, 2018, 10 (08)
  • [10] Dynamic effects of root system architecture improve root water uptake in 1D process-based soil-root hydrodynamics
    Bouda, Martin
    Saiers, James E.
    ADVANCES IN WATER RESOURCES, 2017, 110 : 319 - 334