Organic Emissions from a Wood Stove and a Pellet Stove Before and After Simulated Atmospheric Aging

被引:26
作者
Corbin, Joel C. [1 ]
Keller, Alejandro [2 ]
Lohmann, Ulrike [1 ]
Burtscher, Heinz [2 ]
Sierau, Berko [1 ]
Mensah, Amewu A. [1 ]
机构
[1] ETH, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland
[2] Univ Appl Sci Northwestern Switzerland, Inst Aerosol & Sensor Technol, Windisch, Switzerland
基金
瑞士国家科学基金会;
关键词
AEROSOL MASS-SPECTROMETER; BIOMASS BURNING EMISSIONS; HIGH-RESOLUTION; COLLECTION EFFICIENCIES; PHOTOCHEMICAL OXIDATION; CHEMICAL-COMPOSITION; ELEMENTAL RATIOS; PARTICLE-PHASE; FLOW REACTOR; SECONDARY;
D O I
10.1080/02786826.2015.1079586
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Logwood and pellet stoves are popular heating sources around the world. The particulate matter emitted from such stoves contains organic particulate matter (OM), soot, and ash, each of which may have significant effects on climate and health. In this study, the primary OM (POM) emitted from a wood stove and a pellet stove operated according to standard Swiss testing protocols were characterized using aerosol mass spectrometry. The POM mass spectra were found to be highly reproducible, and contained COC as the dominant ion. Because the POM emitted by such stoves is typically enhanced by the condensation of gaseous organics following atmospheric aging, the secondary OM (SOM) formation potential of these stoves was simulated using the Micro Smog Chamber (MSC) designed by Keller and Burtscher in 2012. In general, OM emission factors from MSC-aged aerosols were comparable to lower-time-resolution results from the literature, although the MSC exposed aerosols to much higher concentrations of oxidants and therefore produced OM that was more oxidized than expected for atmospheric samples. In addition, the logwood-stove particles remained highly aspherical even after oxidation, indicating that mixing with an external aerosol is required for these particles to become spherical. The one exception to this observation occurred when the wood failed to ignite and appeared to generate tar-ball OM particles.
引用
收藏
页码:1037 / 1050
页数:14
相关论文
共 79 条
[11]   Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications [J].
Canagaratna, M. R. ;
Jimenez, J. L. ;
Kroll, J. H. ;
Chen, Q. ;
Kessler, S. H. ;
Massoli, P. ;
Hildebrandt Ruiz, L. ;
Fortner, E. ;
Williams, L. R. ;
Wilson, K. R. ;
Surratt, J. D. ;
Donahue, N. M. ;
Jayne, J. T. ;
Worsnop, D. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (01) :253-272
[12]   Particle-Phase Chemistry of Secondary Organic Material: Modeled Compared to Measured O:C and H:C Elemental Ratios Provide Constraints [J].
Chen, Qi ;
Liu, Yingjun ;
Donahue, Neil M. ;
Shilling, John E. ;
Martin, Scot T. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (11) :4763-4770
[13]   Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles [J].
China, Swarup ;
Mazzoleni, Claudio ;
Gorkowski, Kyle ;
Aiken, Allison C. ;
Dubey, Manvendra K. .
NATURE COMMUNICATIONS, 2013, 4
[14]   Chemical composition of summertime aerosol in the Po Valley (Italy), northern Adriatic and Black Sea [J].
Crosier, J. ;
Allan, J. D. ;
Coe, H. ;
Bower, K. N. ;
Formenti, P. ;
Williams, P. I. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2007, 133 (SUPPL. 1) :61-75
[15]   Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer [J].
DeCarlo, Peter F. ;
Kimmel, Joel R. ;
Trimborn, Achim ;
Northway, Megan J. ;
Jayne, John T. ;
Aiken, Allison C. ;
Gonin, Marc ;
Fuhrer, Katrin ;
Horvath, Thomas ;
Docherty, Kenneth S. ;
Worsnop, Doug R. ;
Jimenez, Jose L. .
ANALYTICAL CHEMISTRY, 2006, 78 (24) :8281-8289
[16]   Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory [J].
DeCarlo, PF ;
Slowik, JG ;
Worsnop, DR ;
Davidovits, P ;
Jimenez, JL .
AEROSOL SCIENCE AND TECHNOLOGY, 2004, 38 (12) :1185-1205
[17]   Hygroscopic growth of atmospheric and model humic-like substances [J].
Dinar, E. ;
Taraniuk, I. ;
Graber, E. R. ;
Anttila, T. ;
Mentel, T. F. ;
Rudich, Y. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D5)
[18]   Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set [J].
Donahue, N. M. ;
Chuang, W. ;
Epstein, S. A. ;
Kroll, J. H. ;
Worsnop, D. R. ;
Robinson, A. L. ;
Adams, P. J. ;
Pandis, S. N. .
ENVIRONMENTAL CHEMISTRY, 2013, 10 (03) :151-157
[19]   A two-dimensional volatility basis set - Part 2: Diagnostics of organic-aerosol evolution [J].
Donahue, N. M. ;
Kroll, J. H. ;
Pandis, S. N. ;
Robinson, A. L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (02) :615-634
[20]   A large source of low-volatility secondary organic aerosol [J].
Ehn, Mikael ;
Thornton, Joel A. ;
Kleist, Einhard ;
Sipila, Mikko ;
Junninen, Heikki ;
Pullinen, Iida ;
Springer, Monika ;
Rubach, Florian ;
Tillmann, Ralf ;
Lee, Ben ;
Lopez-Hilfiker, Felipe ;
Andres, Stefanie ;
Acir, Ismail-Hakki ;
Rissanen, Matti ;
Jokinen, Tuija ;
Schobesberger, Siegfried ;
Kangasluoma, Juha ;
Kontkanen, Jenni ;
Nieminen, Tuomo ;
Kurten, Theo ;
Nielsen, Lasse B. ;
Jorgensen, Solvejg ;
Kjaergaard, Henrik G. ;
Canagaratna, Manjula ;
Dal Maso, Miikka ;
Berndt, Torsten ;
Petaja, Tuukka ;
Wahner, Andreas ;
Kerminen, Veli-Matti ;
Kulmala, Markku ;
Worsnop, Douglas R. ;
Wildt, Juergen ;
Mentel, Thomas F. .
NATURE, 2014, 506 (7489) :476-+