A pruning algorithm with L 1/2 regularizer for extreme learning machine

被引:15
作者
Fan, Ye-tian [1 ]
Wu, Wei [1 ]
Yang, Wen-yu [2 ]
Fan, Qin-wei [1 ]
Wang, Jian [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116023, Peoples R China
[2] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Peoples R China
来源
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS | 2014年 / 15卷 / 02期
基金
中国国家自然科学基金;
关键词
Extreme learning machine (ELM); L-1/2; regularizer; Network pruning;
D O I
10.1631/jzus.C1300197
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Compared with traditional learning methods such as the back propagation (BP) method, extreme learning machine provides much faster learning speed and needs less human intervention, and thus has been widely used. In this paper we combine the L (1/2) regularization method with extreme learning machine to prune extreme learning machine. A variable learning coefficient is employed to prevent too large a learning increment. A numerical experiment demonstrates that a network pruned L (1/2) regularization has fewer hidden nodes but provides better performance than both the original network and the network pruned by L (2) regularization.
引用
收藏
页码:119 / 125
页数:7
相关论文
共 20 条
  • [1] [Anonymous], P 2010 INT C POW SYS
  • [2] Bishop CM., 1995, NEURAL NETWORKS PATT
  • [3] Chen SSB, 2001, SIAM REV, V43, P129, DOI [10.1137/S003614450037906X, 10.1137/S1064827596304010]
  • [4] Uncertainty principles and ideal atomic decomposition
    Donoho, DL
    Huo, XM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) : 2845 - 2862
  • [5] Robust extreme learning machine
    Horata, Punyaphol
    Chiewchanwattana, Sirapat
    Sunat, Khamron
    [J]. NEUROCOMPUTING, 2013, 102 : 31 - 44
  • [6] MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS
    HORNIK, K
    STINCHCOMBE, M
    WHITE, H
    [J]. NEURAL NETWORKS, 1989, 2 (05) : 359 - 366
  • [7] Huang GB, 2004, I C CONT AUTOMAT ROB, P1029
  • [8] Huang GB, 2004, IEEE IJCNN, P985
  • [9] Extreme learning machine: Theory and applications
    Huang, Guang-Bin
    Zhu, Qin-Yu
    Siew, Chee-Kheong
    [J]. NEUROCOMPUTING, 2006, 70 (1-3) : 489 - 501
  • [10] Extreme learning machines: a survey
    Huang, Guang-Bin
    Wang, Dian Hui
    Lan, Yuan
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2011, 2 (02) : 107 - 122