The addition of Si to the Ti-35Nb alloy and its effect on the corrosion resistance, when applied to biomedical materials

被引:22
作者
Tavares, A. M. G. [1 ]
Fernandes, B. S. [1 ]
Souza, S. A. [1 ]
Batista, W. W. [1 ]
Cunha, F. G. C. [1 ]
Landers, R. [2 ]
Macedo, M. C. S. S. [1 ]
机构
[1] Univ Fed Sergipe, Dept Mat Sci & Engn, BR-49100000 Sao Cristovao, SE, Brazil
[2] State Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil
关键词
Titanium alloys; Corrosion resistance; Biomaterials; SHAPE-MEMORY ALLOYS; TI-NB ALLOYS; TITANIUM-ALLOYS; TERNARY ALLOYS; BEHAVIOR; MICROSTRUCTURE; ELEMENTS; SILICON;
D O I
10.1016/j.jallcom.2013.12.183
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alloy elements such as niobium and silicon have been added to titanium as an alternative for new materials to be used in orthopedic implants once they present biocompatibility and favor reductions in the elastic modulus. However, these new materials' behavior, in face of corrosion is still demanding careful investigations because they will be subjected to an aggressive environ, such as the human body. The corrosion resistance of the Ti-35Nb-(0; 0.15; 0.35; 0.55) Si (% in mass) when in physiological medium was assessed by means of polarization curves, open circuit potential and electrochemical impedance spectroscopy. The compositions of the passive films were analyzed by X-ray photoelectron spectroscopy (XPS). Outcomes show that the alloys presented good rapid repassivation capacity after film breaking under high potentials. The high values of resistance to polarization - Rp - pinpoint that the formed oxide films are resistive. They work as a protecting barrier against aggressive ions. Data suggest that the studied alloys are promising for orthopedic implant applications. (C) 2014 Elsevier B. V. All rights reserved.
引用
收藏
页码:91 / 99
页数:9
相关论文
共 34 条
[1]   Influence of cooling rate on microstructure of Ti-Nb alloy for orthopedic implants [J].
Afonso, C. R. M. ;
Aleixo, G. T. ;
Ramirez, A. J. ;
Caram, R. .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2007, 27 (04) :908-913
[2]   Corrosion behavior of β titanium alloys for biomedical applications [J].
Atapour, M. ;
Pilchak, A. L. ;
Frankel, G. S. ;
Williams, J. C. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2011, 31 (05) :885-891
[3]   Electrochemical corrosion behavior of Ti-24Nb-4Zr-8Sn alloy in a simulated physiological environment [J].
Bai, Y. ;
Li, S. J. ;
Prima, F. ;
Hao, Y. L. ;
Yang, R. .
APPLIED SURFACE SCIENCE, 2012, 258 (08) :4035-4040
[4]   The mechanism of grain refinement of titanium by silicon [J].
Bermingham, M. J. ;
McDonald, S. D. ;
Dargusch, M. S. ;
StJohn, D. H. .
SCRIPTA MATERIALIA, 2008, 58 (12) :1050-1053
[5]   Repeatability of corrosion parameters for titanium-molybdenum alloys in 0.9% NaCl solution [J].
Capela, Marisa V. ;
Acciari, Heloisa A. ;
Capela, Jorge Manuel V. ;
Carvalho, Thaisa M. ;
Melin, Maria Cecilia S. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 465 (1-2) :479-483
[6]   Electrochemical corrosion behavior of a Ti-35Nb alloy for medical prostheses [J].
Cremasco, Alessandra ;
Osorio, Wislei R. ;
Freire, Celia M. A. ;
Garcia, Amauri ;
Caram, Rubens .
ELECTROCHIMICA ACTA, 2008, 53 (14) :4867-4874
[7]   Biocompatibility of β-stabilizing elements of titanium alloys [J].
Eisenbarth, E ;
Velten, D ;
Müller, M ;
Thull, R ;
Breme, J .
BIOMATERIALS, 2004, 25 (26) :5705-5713
[8]   Ti based biomaterials, the ultimate choice for orthopaedic implants - A review [J].
Geetha, M. ;
Singh, A. K. ;
Asokamani, R. ;
Gogia, A. K. .
PROGRESS IN MATERIALS SCIENCE, 2009, 54 (03) :397-425
[9]   Electrochemical and XPS studies of corrosion behavior of Ti-23Nb-0.7Ta-2Zr-O alloy in Ringer's solution [J].
Guo, W. Y. ;
Sun, J. ;
Wu, J. S. .
MATERIALS CHEMISTRY AND PHYSICS, 2009, 113 (2-3) :816-820
[10]   Evaluation techniques of metallic biomaterials in vitro [J].
Hanawa, Takao .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2002, 3 (04) :289-295