A facile molecularly engineered copper (II) phthalocyanine as hole transport material for planar perovskite solar cells with enhanced performance and stability

被引:122
作者
Yang, Guang [1 ]
Wang, Yu-Long [2 ]
Xu, Jia-Ju [2 ]
Lei, Hong-Wei [1 ]
Chen, Cong [1 ]
Shan, Hai-Quan [2 ]
Liu, Xiao-Yuan [2 ]
Xu, Zong-Xiang [2 ]
Fang, Guo-Jia [1 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Minist Educ China, Key Lab Artificial Micro & Nanostruct, Wuhan 430072, Peoples R China
[2] South Univ Sci & Technol China, Dept Chem, Shenzhen, Guangdong 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
Hole transport materials; Copper (II) phthalocyanine; Octamethyl-substituted; Molecular alignment; Long-term stability; HIGHLY EFFICIENT; PHOTOVOLTAIC CELLS; LAYER; CONTACTS; IMPACT; CARBON; FILMS; OXIDE;
D O I
10.1016/j.nanoen.2016.11.039
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Perovskite solar cells (PSCs) demonstrate huge potential in photovoltaic conversion, yet their practical applications face one major obstacle: their instability. As to conventional hole transport materials (HTMs) such as spiro-OMeTAD, their future commercialization maybe hampered for the cost and instability. Here, we report a new HTM of copper (II) phthalocyanine with octamethyl-substituted function groups (CuMe2Pc). Unlike the normal edge on orientation of pristine copper (II) phthalocyanine (CuPc), we found that CuMe2Pc could form face-on molecular alignment when deposited on perovskite via vacuum thermal evaporation, resulting in higher hole mobility, more condense thin film structure and more hydrophobic surface. These properties are more favorable for hole transport and moisture resistance applications in PSCs. PSCs with planar structure were fabricated and tested, utilizing different phthalocyanines and spiro-OMeTAD as HTMs. PSCs with CuMe2Pc showed 25% higher power conversion efficiency (PCE) compared with those with CuPc. Furthermore, beneficial from the hydrophobic nature of CuMe2Pc, the devices with CuMe2Pc as HTM show improved stability and retained over 95% of their initial efficiencies even after storage in the humidity about 50% for 2000 h without encapsulation. This study demonstrates that CuMe2Pc is a potential HTM for fabricating low-cost and efficient PSCs with long-term stability.
引用
收藏
页码:322 / 330
页数:9
相关论文
共 57 条
[1]  
Abate A, 2013, PHYS CHEM CHEM PHYS, V15, P2572, DOI [10.1039/c2cp44397J, 10.1039/c2cp44397j]
[2]   Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide [J].
Ahn, Namyoung ;
Son, Dae-Yong ;
Jang, In-Hyuk ;
Kang, Seong Min ;
Choi, Mansoo ;
Park, Nam-Gyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (27) :8696-8699
[3]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[4]   Well-Defined Thiolated Nanographene as Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells [J].
Cao, Jing ;
Liu, Yu-Min ;
Jing, Xiaojing ;
Yin, Jun ;
Li, Jing ;
Xu, Bin ;
Tan, Yuan-Zhi ;
Zheng, Nanfeng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (34) :10914-10917
[5]   Stable and efficient hole transporting materials with a dimethylfluorenylamino moiety for perovskite solar cells [J].
Choi, Hyeju ;
Cho, Jin Woo ;
Kang, Moon-Sung ;
Ko, Jaejung .
CHEMICAL COMMUNICATIONS, 2015, 51 (45) :9305-9308
[6]  
Conings B., 2015, ADV ENERGY MATER, V5, P15
[7]   14.8% perovskite solar cells employing carbazole derivatives as hole transporting materials [J].
Do Sung, Sang ;
Kang, Min Soo ;
Choi, In Taek ;
Kim, Hong Mo ;
Kim, Hyoungjin ;
Hong, MunPyo ;
Kim, Hwan Kyu ;
Lee, Wan In .
CHEMICAL COMMUNICATIONS, 2014, 50 (91) :14161-14163
[8]   Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells [J].
Habisreutinger, Severin N. ;
Leijtens, Tomas ;
Eperon, Giles E. ;
Stranks, Samuel D. ;
Nicholas, Robin J. ;
Snaith, Henry J. .
NANO LETTERS, 2014, 14 (10) :5561-5568
[9]   Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films [J].
Hawash, Zafer ;
Ono, Luis K. ;
Raga, Sonia R. ;
Lee, Michael V. ;
Qi, Yabing .
CHEMISTRY OF MATERIALS, 2015, 27 (02) :562-569
[10]   Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells [J].
Huang, Chuyi ;
Fu, Weifei ;
Li, Chang-Zhi ;
Zhang, Zhongqiang ;
Qiu, Weiming ;
Shi, Minmin ;
Heremans, Paul ;
Jen, Alex K. -Y. ;
Chen, Hongzheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (08) :2528-2531