Optimal Receding Horizon Control for Finite Deterministic Systems with Temporal Logic Constraints

被引:0
作者
Svorenova, Maria [1 ]
Cerna, Ivana [1 ]
Belta, Calin
机构
[1] Masaryk Univ, Fac Informat, Brno, Czech Republic
来源
2013 AMERICAN CONTROL CONFERENCE (ACC) | 2013年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we develop a provably correct optimal control strategy for a finite deterministic transition system. By assuming that penalties with known probabilities of occurrence and dynamics can be sensed locally at the states of the system, we derive a receding horizon strategy that minimizes the expected average cumulative penalty incurred between two consecutive satisfactions of a desired property. At the same time, we guarantee the satisfaction of correctness specifications expressed as Linear Temporal Logic formulas. We illustrate the approach with a persistent surveillance robotics application.
引用
收藏
页码:4399 / 4404
页数:6
相关论文
共 50 条
[41]   Economic receding horizon control without terminal constraints [J].
Gruene, Lars .
AUTOMATICA, 2013, 49 (03) :725-734
[42]   On the robustness of receding-horizon control with terminal constraints [J].
DeNicolao, G ;
Magni, L ;
Scattolini, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (03) :451-453
[43]   MDP Optimal Control under Temporal Logic Constraints [J].
Ding, Xu Chu ;
Smith, Stephen L. ;
Belta, Calin ;
Rus, Daniela .
2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, :532-538
[44]   Optimal Secure Control With Linear Temporal Logic Constraints [J].
Niu, Luyao ;
Clark, Andrew .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (06) :2434-2449
[45]   Chance Constrained Finite Horizon Optimal Control with Nonconvex Constraints [J].
Ono, Masahiro ;
Blackmore, Lars ;
Williams, Brian C. .
2010 AMERICAN CONTROL CONFERENCE, 2010, :1145-1152
[46]   On the robustness of receding-horizon control with terminal constraints [J].
Universita di Pavia, Pavia, Italy .
IEEE Trans Autom Control, 3 (451-453)
[47]   Multivariable Receding Horizon Control of Aircraft with Actuator Constraints [J].
Deshpande, Vinayak ;
Zhang, Youmin .
2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, :1846-1851
[48]   Finite-Horizon Optimal Spatio-Temporal Pattern Control under Spatio-Temporal Logic Specifications [J].
Kinugawa, Takuma ;
Ushio, Toshimitsu .
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (10) :1658-1664
[49]   Mobile Robot Networks for Environmental Monitoring: A Cooperative Receding Horizon Temporal Logic Control Approach [J].
Lu Q. ;
Han Q.-L. .
IEEE Transactions on Cybernetics, 2019, 49 (02) :698-711
[50]   A sub-optimal receding horizon control strategy for constrained linear systems [J].
Rojas, OJ ;
Goodwin, GC ;
Feuer, A ;
Serón, MM .
PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, :77-82