Entransy and entropy analyses of heat pump systems

被引:15
作者
Cheng XueTao [1 ]
Liang XinGang [1 ]
机构
[1] Tsinghua Univ, Dept Engn Mech, Minist Educ, Key Lab Thermal Sci & Power Engn, Beijing 100084, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2013年 / 58卷 / 36期
基金
中国国家自然科学基金;
关键词
entransy loss; entransy increase; entropy generation; heat pump; optimization; THERMAL-RESISTANCE; COP OPTIMIZATIONS; LOAD DENSITY; DISSIPATION; GENERATION; PERFORMANCE; TEMPERATURE; PRINCIPLE;
D O I
10.1007/s11434-013-6096-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, heat pump systems are analyzed with entransy increase and entropy generation. The extremum entransy increase principle is developed. When the equivalent temperatures of the high and low temperature heat sources are fixed, the theoretical analyses and numerical results both show that the maximum COP leads to the maximum entransy increase rate for fixed input power, while it leads to the minimum entransy increase rate for fixed heat flow absorbed from the low temperature heat source. The minimum entropy generation principle shows that the minimum entropy generation rate always leads to the maximum COP for fixed input power or fixed heat flow absorbed from the low temperature heat source when the equivalent thermodynamic forces of the high and low temperature heat sources are given. Further discussions show that only the entransy increase rate always increases with increasing heat flow rate into the high temperature heat source for the discussed cases.
引用
收藏
页码:4696 / 4702
页数:7
相关论文
共 52 条
[21]   Radiative entransy flux in enclosures with non-isothermal or non-grey, opaque, diffuse surfaces and its application [J].
Cheng XueTao ;
Xu XiangHua ;
Liang XinGang .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2011, 54 (09) :2446-2456
[22]   Entransy decrease principle of heat transfer in an isolated system [J].
Cheng XueTao ;
Liang XinGang ;
Guo ZengYuan .
CHINESE SCIENCE BULLETIN, 2011, 56 (09) :847-854
[23]   Entransy flux of thermal radiation and its application to enclosures with opaque surfaces [J].
Cheng, Xuetao ;
Liang, Xingang .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (1-3) :269-278
[24]   Homogenization of temperature field and temperature gradient field [J].
Cheng XueTao ;
Xu XiangHua ;
Liang XinGang .
SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2009, 52 (10) :2937-2942
[25]   Optimization of thermoelectric heat pumps by operating condition management and heat exchanger design [J].
David, Benjamin ;
Ramousse, Julien ;
Luo, Lingai .
ENERGY CONVERSION AND MANAGEMENT, 2012, 60 :125-133
[26]   An approach to entropy analysis of a latent heat storage module [J].
Erek, Aytunc ;
Dincer, Ibrahim .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2008, 47 (08) :1077-1085
[27]   Constructal entransy dissipation rate minimization for leaf-like fins [J].
Feng HuiJun ;
Chen LinGen ;
Sun FengRui .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2012, 55 (02) :515-526
[28]   Experimental analysis of a direct expansion solar assisted heat pump with integral storage tank for domestic water heating under zero solar radiation conditions [J].
Fernandez-Seara, Jose ;
Pineiro, Carolina ;
Alberto Dopazo, J. ;
Fernandes, F. ;
Sousa, Paulo X. B. .
ENERGY CONVERSION AND MANAGEMENT, 2012, 59 :1-8
[29]   Effectiveness-thermal resistance method for heat exchanger design and analysis [J].
Guo, Z. Y. ;
Liu, X. B. ;
Tao, W. Q. ;
Shah, R. K. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (13-14) :2877-2884
[30]   Entransy - A physical quantity describing heat transfer ability [J].
Guo, Zeng-Yuan ;
Zhu, Hong-Ye ;
Liang, Xin-Gang .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (13-14) :2545-2556