Instability of standing waves of the Schrodinger equation with inhomogeneous nonlinearity

被引:43
作者
Liu, Y [1 ]
Wang, XP
Wang, K
机构
[1] Univ Texas, Dept Math, Arlington, TX 76019 USA
[2] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
[3] CALTECH, Pasadena, CA 91125 USA
关键词
nonlinear Schrodinger equation; inhomogeneous nonlinearities; blow-up; standing waves; ground state; stability theory;
D O I
10.1090/S0002-9947-05-03763-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the inhomogeneous nonlinear Shrodinger equation ( INLS-equation) iu(t) + Delta u + V (epsilon x)vertical bar u vertical bar(p)u = 0, x epsilon R-N. In the critical and supercritical cases p >= 4/N, with N >= 2, it is shown here that standing-wave solutions of ( INLS-equation) on H-1( R-N) perturbation are nonlinearly unstable or unstable by blow-up under certain conditions on the potential term V with a small epsilon > 0.
引用
收藏
页码:2105 / 2122
页数:18
相关论文
共 16 条
[1]  
[Anonymous], TEXTOS METODOS MATEM
[2]  
BERESTYCKI H, 1981, CR ACAD SCI I-MATH, V293, P489
[3]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[4]   Stability of solitary waves for nonlinear Schrodinger equations with inhomogeneous nonlinearities [J].
Fibich, G ;
Wang, XP .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 175 (1-2) :96-108
[5]  
Gill T. S., 2000, PRAMANA-J PHYS, V55, P845
[6]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .2. SCATTERING THEORY, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :33-71
[7]   STABILITY THEORY OF SOLITARY WAVES IN THE PRESENCE OF SYMMETRY .1. [J].
GRILLAKIS, M ;
SHATAH, J ;
STRAUSS, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (01) :160-197
[8]  
KATO T, 1987, ANN I H POINCARE-PHY, V46, P113
[9]   Nonlinear stability of solitary waves of a generalized Kadomtsev-Petviashvili equation [J].
Liu, Y ;
Wang, XP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (02) :253-266
[10]  
Merle F, 1996, ANN I H POINCARE-PHY, V64, P33