Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid

被引:39
作者
Chen, YP [1 ]
机构
[1] Xiangtan Univ, Dept Math, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
singular perturbation; moving mesh; rate of convergence; error estimate;
D O I
10.1007/s10444-004-7641-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A singularly perturbed two-point boundary value problem with an exponential boundary layer is solved numerically by using an adaptive grid method. The mesh is constructed adaptively by equidistributing a monitor function based on the arc-length of the approximated solutions. A first-order rate of convergence, independent of the perturbation parameter, is established by using the theory of the discrete Green's function. Unlike some previous analysis for the fully discretized approach, the present problem does not require the conservative form of the underlying boundary value problem.
引用
收藏
页码:197 / 212
页数:16
相关论文
共 21 条
[1]  
ANDREYEV VB, 1995, COMP MATH MATH PHYS+, V35, P581
[2]   Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem [J].
Beckett, G ;
Mackenzie, JA .
APPLIED NUMERICAL MATHEMATICS, 2000, 35 (02) :87-109
[3]  
CHEN Y, UNPUB ALTERNATIVE CO
[4]   Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution [J].
Chen, YP .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 159 (01) :25-34
[5]  
KELLOGG RB, 1978, MATH COMPUT, V32, P1025, DOI 10.1090/S0025-5718-1978-0483484-9
[6]   Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem [J].
Kopteva, N .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (02) :423-441
[7]   A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem [J].
Kopteva, N ;
Stynes, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (04) :1446-1467
[8]   Moving mesh methods in multiple dimensions based on harmonic maps [J].
Li, R ;
Tang, T ;
Zhang, PW .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (02) :562-588
[9]   Uniform pointwise convergence of finite difference schemes using grid equidistribution [J].
Linss, T .
COMPUTING, 2001, 66 (01) :27-39
[10]   Uniform pointwise convergence on Shishkin-type meshes for quasi-linear convection-diffusion problems [J].
Linss, T ;
Roos, HG ;
Vulanovic, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (03) :897-912